Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Environ Health Perspect ; 130(12): 127002, 2022 12.
Article in English | MEDLINE | ID: mdl-36473499

ABSTRACT

BACKGROUND: Aedes aegypti and Ae. albopictus mosquitoes are major vectors for several human diseases of global importance, such as dengue and yellow fever. Their life cycles and hosted arboviruses are climate sensitive and thus expected to be impacted by climate change. Most studies investigating climate change impacts on Aedes at global or continental scales focused on their future global distribution changes, whereas a single study focused on its effects on Ae. aegypti densities regionally. OBJECTIVES: A process-based approach was used to model densities of Ae. aegypti and Ae. albopictus and their potential evolution with climate change using a panel of nine CMIP6 climate models and climate scenarios ranging from strong to low mitigation measures at the Southeast Asian scale and for the next 80 y. METHODS: The process-based model described, through a system of ordinary differential equations, the variations of mosquito densities in 10 compartments, corresponding to 10 different stages of mosquito life cycle, in response to temperature and precipitation variations. Local field data were used to validate model outputs. RESULTS: We show that both species densities will globally increase due to future temperature increases. In Southeast Asia by the end of the century, Ae. aegypti densities are expected to increase from 25% with climate mitigation measures to 46% without; Ae. albopictus densities are expected to increase from 13%-21%, respectively. However, we find spatially contrasted responses at the seasonal scales with a significant decrease in Ae. albopictus densities in lowlands during summer in the future. DISCUSSION: These results contrast with previous results, which brings new insight on the future impacts of climate change on Aedes densities. Major sources of uncertainties, such as mosquito model parametrization and climate model uncertainties, were addressed to explore the limits of such modeling. https://doi.org/10.1289/EHP11068.


Subject(s)
Climate Change , Humans
2.
PLoS Negl Trop Dis ; 16(7): e0010547, 2022 07.
Article in English | MEDLINE | ID: mdl-35900991

ABSTRACT

BACKGROUND: Dengue is the world's most prevalent mosquito-borne viral disease. It is endemic in many tropical and subtropical countries and represents a significant global health burden. The first reports of dengue virus (DENV) circulation in the South West Indian Ocean (SWIO) islands date back to the early 1940s; however, an increase in DENV circulation has been reported in the SWIO in recent years. The aim of this review is to trace the history of DENV in the SWIO islands using available records from the Comoros, Madagascar, Mauritius, Mayotte, Seychelles, and Reunion. We focus in particular on the most extensive data from Reunion Island, highlighting factors that may explain the observed increasing incidence, and the potential shift from one-off outbreaks to endemic dengue transmission. METHODS: Following the PRISMA guidelines, the literature review focused queried different databases using the keywords "dengue" or "Aedes albopictus" combined with each of the following SWIO islands the Comoros, Madagascar, Mauritius, Mayotte, Seychelles, and Reunion. We also compiled case report data for dengue in Mayotte and Reunion in collaboration with the regional public health agencies in these French territories. References and data were discarded when original sources were not identified. We examined reports of climatic, anthropogenic, and mosquito-related factors that may influence the maintenance of dengue transmission independently of case importation linked to travel. FINDINGS AND CONCLUSIONS: The first report of dengue circulation in the SWIO was documented in 1943 in the Comoros. Then not until an outbreak in 1976 to 1977 that affected approximately 80% of the population of the Seychelles. DENV was also reported in 1977 to 1978 in Reunion with an estimate of nearly 30% of the population infected. In the following 40-year period, DENV circulation was qualified as interepidemic with sporadic cases. However, in recent years, the region has experienced uninterrupted DENV transmission at elevated incidence. Since 2017, Reunion witnessed the cocirculation of 3 serotypes (DENV-1, DENV-2 and DENV-3) and an increased number of cases with severe forms and deaths. Reinforced molecular and serological identification of DENV serotypes and genotypes circulating in the SWIO as well as vector control strategies is necessary to protect exposed human populations and limit the spread of dengue.


Subject(s)
Aedes , Mosquito Vectors , Animals , Disease Outbreaks , Humans , Indian Ocean , Reunion/epidemiology
3.
Transbound Emerg Dis ; 69(3): 1338-1348, 2022 May.
Article in English | MEDLINE | ID: mdl-33830618

ABSTRACT

The World Organisation for Animal Health advocates the zoning approach for the surveillance and monitoring of foot and mouth disease (FMD), a highly contagious animal disease. Our purpose is to implement the zoning approach in Tunisia by identifying existing natural and artificial barriers to the movement of live animals. A Geographic Information System (GIS)-based MultiCriteria Evaluation approach was developed. Eight national and international experts were asked to identify the barriers and prioritize them, characterized by a percentage weight between 0 and 100. These barriers were mapped and combined, taking into account their relative importance, to create a friction map that makes it possible to visualize areas where animal movements are restricted. Uncertainty analysis was performed to assess the robustness of the model. The results showed that the selected barriers were in order of decreasing importance: maritime borders with a weight of 33.5%, rivers (13.8%), slopes equal to or greater than 10% (13.8%), wetlands (13.3%), forests (7.7%), land borders (7.7%), railway networks (5%) and main roads (4.9%). The Cap Bon zone is the only favourable zoning area for the control of FMD in Tunisia. A regional approach resulting from this work could be a major asset in identifying regions suitable for zoning in North Africa.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Animals , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/prevention & control , Geographic Information Systems , Rivers , Tunisia/epidemiology
4.
PLoS Negl Trop Dis ; 15(8): e0009683, 2021 08.
Article in English | MEDLINE | ID: mdl-34424896

ABSTRACT

The unexpected Ebola virus outbreak in West Africa in 2014 involving the Zaire ebolavirus made clear that other regions outside Central Africa, its previously documented niche, were at risk of future epidemics. The complex transmission cycle and a lack of epidemiological data make mapping areas at risk of the disease challenging. We used a Geographic Information System-based multicriteria evaluation (GIS-MCE), a knowledge-based approach, to identify areas suitable for Ebola virus spillover to humans in regions of Guinea, Congo and Gabon where Ebola viruses already emerged. We identified environmental, climatic and anthropogenic risk factors and potential hosts from a literature review. Geographical data layers, representing risk factors, were combined to produce suitability maps of Ebola virus spillover at the landscape scale. Our maps show high spatial and temporal variability in the suitability for Ebola virus spillover at a fine regional scale. Reported spillover events fell in areas of intermediate to high suitability in our maps, and a sensitivity analysis showed that the maps produced were robust. There are still important gaps in our knowledge about what factors are associated with the risk of Ebola virus spillover. As more information becomes available, maps produced using the GIS-MCE approach can be easily updated to improve surveillance and the prevention of future outbreaks.


Subject(s)
Ebolavirus/physiology , Hemorrhagic Fever, Ebola/epidemiology , Africa/epidemiology , Animals , Chiroptera/virology , Disease Outbreaks , Disease Reservoirs/virology , Ebolavirus/genetics , Female , Geographic Information Systems , Hemorrhagic Fever, Ebola/transmission , Hemorrhagic Fever, Ebola/virology , Humans , Male , Risk Factors , Seasons
5.
Parasit Vectors ; 14(1): 288, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34044880

ABSTRACT

BACKGROUND: Reunion Island regularly faces outbreaks of bluetongue and epizootic hemorrhagic diseases, two insect-borne orbiviral diseases of ruminants. Hematophagous midges of the genus Culicoides (Diptera: Ceratopogonidae) are the vectors of bluetongue (BTV) and epizootic hemorrhagic disease (EHDV) viruses. In a previous study, statistical models based on environmental and meteorological data were developed for the five Culicoides species present in the island to provide a better understanding of their ecology and predict their presence and abundance. The purpose of this study was to couple these statistical models with a Geographic Information System (GIS) to produce dynamic maps of the distribution of Culicoides throughout the island. METHODS: Based on meteorological data from ground weather stations and satellite-derived environmental data, the abundance of each of the five Culicoides species was estimated for the 2214 husbandry locations on the island for the period ranging from February 2016 to June 2018. A large-scale Culicoides sampling campaign including 100 farms was carried out in March 2018 to validate the model. RESULTS: According to the model predictions, no husbandry location was free of Culicoides throughout the study period. The five Culicoides species were present on average in 57.0% of the husbandry locations for C. bolitinos Meiswinkel, 40.7% for C. enderleini Cornet & Brunhes, 26.5% for C. grahamii Austen, 87.1% for C. imicola Kieffer and 91.8% for C. kibatiensis Goetghebuer. The models also showed high seasonal variations in their distribution. During the validation process, predictions were acceptable for C. bolitinos, C. enderleini and C. kibatiensis, with normalized root mean square errors (NRMSE) of 15.4%, 13.6% and 16.5%, respectively. The NRMSE was 27.4% for C. grahamii. For C. imicola, the NRMSE was acceptable (11.9%) considering all husbandry locations except in two specific areas, the Cirque de Salazie-an inner mountainous part of the island-and the sea edge, where the model overestimated its abundance. CONCLUSIONS: Our model provides, for the first time to our knowledge, an operational tool to better understand and predict the distribution of Culicoides in Reunion Island. As it predicts a wide spatial distribution of the five Culicoides species throughout the year and taking into consideration their vector competence, our results suggest that BTV and EHDV can circulate continuously on the island. As further actions, our model could be coupled with an epidemiological model of BTV and EHDV transmission to improve risk assessment of Culicoides-borne diseases on the island.


Subject(s)
Animal Distribution , Ceratopogonidae/classification , Insect Vectors/classification , Animals , Bluetongue/transmission , Bluetongue virus , Cattle , Deer , Disease Outbreaks , Goats , Hemorrhagic Disease Virus, Epizootic , Horses , Indian Ocean , Insect Vectors/virology , Models, Statistical , Reunion , Risk Assessment , Seasons , Sheep , Species Specificity
6.
Sci Rep ; 11(1): 7354, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33795801

ABSTRACT

The expansion of mosquito species worldwide is creating a powerful network for the spread of arboviruses. In addition to the destruction of breeding sites (prevention) and mass trapping, methods based on the sterile insect technique (SIT), the autodissemination of pyriproxyfen (ADT), and a fusion of elements from both of these known as boosted SIT (BSIT), are being developed to meet the urgent need for effective vector control. However, the comparative potential of these methods has yet to be explored in different environments. This is needed to propose and integrate informed guidelines into sustainable mosquito management plans. We extended a weather-dependent model of Aedes albopictus population dynamics to assess the effectiveness of these different vector control methods, alone or in combination, in a tropical (Reunion island, southwest Indian Ocean) and a temperate (Montpellier area, southern France) climate. Our results confirm the potential efficiency of SIT in temperate climates when performed early in the year (mid-March for northern hemisphere). In such a climate, the timing of the vector control action was the key factor in its success. In tropical climates, the potential of the combination of methods becomes more relevant. BSIT and the combination of ADT with SIT were twice as effective compared to the use of SIT alone.


Subject(s)
Aedes/physiology , Aedes/virology , Mosquito Control/methods , Mosquito Vectors , Animals , Climate , Ecology , France , Male , Population Dynamics , Pyridines/chemistry , Reunion , Tropical Climate , Weather
7.
PLoS Negl Trop Dis ; 15(2): e0009029, 2021 02.
Article in English | MEDLINE | ID: mdl-33600454

ABSTRACT

Murine typhus is a flea-borne zoonotic disease that has been recently reported on Reunion Island, an oceanic volcanic island located in the Indian Ocean. Five years of survey implemented by the regional public health services have highlighted a strong temporal and spatial structure of the disease in humans, with cases mainly reported during the humid season and restricted to the dry southern and western portions of the island. We explored the environmental component of this zoonosis in an attempt to decipher the drivers of disease transmission. To do so, we used data from a previously published study (599 small mammals and 175 Xenopsylla fleas from 29 sampling sites) in order to model the spatial distribution of rat fleas throughout the island. In addition, we carried out a longitudinal sampling of rats and their ectoparasites over a 12 months period in six study sites (564 rats and 496 Xenopsylla fleas) in order to model the temporal dynamics of flea infestation of rats. Generalized Linear Models and Support Vector Machine classifiers were developed to model the Xenopsylla Genus Flea Index (GFI) from climatic and environmental variables. Results showed that the spatial distribution and the temporal dynamics of fleas, estimated through the GFI variations, are both strongly controlled by abiotic factors: rainfall, temperature and land cover. The models allowed linking flea abundance trends with murine typhus incidence rates. Flea infestation in rats peaked at the end of the dry season, corresponding to hot and dry conditions, before dropping sharply. This peak of maximal flea abundance preceded the annual peak of human murine typhus cases by a few weeks. Altogether, presented data raise novel questions regarding the ecology of rat fleas while developed models contribute to the design of control measures adapted to each micro region of the island with the aim of lowering the incidence of flea-borne diseases.


Subject(s)
Flea Infestations/veterinary , Rats/parasitology , Typhus, Endemic Flea-Borne/epidemiology , Xenopsylla , Animals , Ecosystem , Flea Infestations/epidemiology , Humans , Incidence , Mammals/parasitology , Reunion/epidemiology , Rodent Diseases/epidemiology , Rodent Diseases/parasitology , Seasons , Spatio-Temporal Analysis , Typhus, Endemic Flea-Borne/transmission
8.
Mov Ecol ; 8(1): 46, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33292573

ABSTRACT

BACKGROUND: Improved understanding of the foraging ecology of bats in the face of ongoing habitat loss and modification worldwide is essential to their conservation and maintaining the substantial ecosystem services they provide. It is also fundamental to assessing potential transmission risks of zoonotic pathogens in human-wildlife interfaces. We evaluated the influence of environmental and behavioral variables on the foraging patterns of Pteropus lylei (a reservoir of Nipah virus) in a heterogeneous landscape in Cambodia. METHODS: We employed an approach based on animal-movement modeling, which comprised a path-segmentation method (hidden Markov model) to identify individual foraging-behavior sequences in GPS data generated by eight P. lylei. We characterized foraging localities, foraging activity, and probability of returning to a given foraging locality over consecutive nights. Generalized linear mixed models were also applied to assess the influence of several variables including proxies for energetic costs and quality of foraging areas. RESULTS: Bats performed few foraging bouts (area-restricted searches) during a given night, mainly in residential areas, and the duration of these decreased during the night. The probability of a bat revisiting a given foraging area within 48 h varied according to the duration previously spent there, its distance to the roost site, and the corresponding habitat type. We interpret these fine-scale patterns in relation to global habitat quality (including food-resource quality and predictability), habitat-familiarity and experience of each individual. CONCLUSIONS: Our study provides evidence that heterogeneous human-made environments may promote complex patterns of foraging-behavior and short-term re-visitation in fruit bat species that occur in such landscapes. This highlights the need for similarly detailed studies to understand the processes that maintain biodiversity in these environments and assess the potential for pathogen transmission in human-wildlife interfaces.

9.
PLoS Negl Trop Dis ; 14(6): e0008009, 2020 06.
Article in English | MEDLINE | ID: mdl-32479505

ABSTRACT

Rift Valley fever (RVF) is endemic in northern Senegal, a Sahelian area characterized by a temporary pond network that drive both RVF mosquito population dynamics and nomadic herd movements. To investigate the mechanisms that explain RVF recurrent circulation, we modelled a realistic epidemiological system at the pond level integrating vector population dynamics, resident and nomadic ruminant herd population dynamics, and nomadic herd movements recorded in Younoufere area. To calibrate the model, serological surveys were performed in 2015-2016 on both resident and nomadic domestic herds in the same area. Mosquito population dynamics were obtained from a published model trained in the same region. Model comparison techniques were used to compare five different scenarios of virus introduction by nomadic herds associated or not with vertical transmission in Aedes vexans. Our serological results confirmed a long lasting RVF endemicity in resident herds (IgG seroprevalence rate of 15.3%, n = 222), and provided the first estimation of RVF IgG seroprevalence in nomadic herds in West Africa (12.4%, n = 660). Multivariate analysis of serological data suggested an amplification of the transmission cycle during the rainy season with a peak of circulation at the end of that season. The best scenario of virus introduction combined yearly introductions of RVFV from 2008 to 2015 (the study period) by nomadic herds, with a proportion of viraemic individuals predicted to be larger in animals arriving during the 2nd half of the rainy season (3.4%). This result is coherent with the IgM prevalence rate (4%) found in nomadic herds sampled during the 2nd half of the rainy season. Although the existence of a vertical transmission mechanism in Aedes cannot be ruled out, our model demonstrates that nomadic movements are sufficient to account for this endemic circulation in northern Senegal.


Subject(s)
Aedes/growth & development , Disease Outbreaks , Models, Statistical , Rift Valley Fever/epidemiology , Vector Borne Diseases/epidemiology , Vector Borne Diseases/veterinary , Animals , Disease Transmission, Infectious , Female , Humans , Male , Recurrence , Rift Valley Fever/transmission , Senegal/epidemiology , Seroepidemiologic Studies , Vector Borne Diseases/transmission
10.
Viruses ; 12(2)2020 01 21.
Article in English | MEDLINE | ID: mdl-31973026

ABSTRACT

Influenza D virus (IDV) has been identified in several continents, with serological evidence for the virus in Africa. In order to improve the sensitivity and cost-benefit of IDV surveillance in Togo, risk maps were drawn using a spatial multicriteria decision analysis (MCDA) and experts' opinion to evaluate the relevance of sampling areas used so far. Areas at highest risk of IDV occurrence were the main cattle markets. The maps were evaluated with previous field surveillance data collected in Togo between 2017 and 2019: 1216 sera from cattle, small ruminants, and swine were screened for antibodies to IDV by hemagglutination inhibition (HI) assays. While further samples collections are needed to validate the maps, the risk maps resulting from the spatial MCDA approach generated here highlight several priority areas for IDV circulation assessment.


Subject(s)
Decision Support Techniques , Epidemiological Monitoring/veterinary , Orthomyxoviridae Infections/veterinary , Thogotovirus , Animals , Antibodies, Viral/blood , Cattle , Hemagglutination Inhibition Tests , Orthomyxoviridae Infections/epidemiology , Risk Factors , Ruminants/virology , Spatial Analysis , Swine/virology , Togo/epidemiology
11.
PLoS One ; 15(1): e0227407, 2020.
Article in English | MEDLINE | ID: mdl-31951601

ABSTRACT

Mosquitoes are responsible for the transmission of major pathogens worldwide. Modelling their population dynamics and mapping their distribution can contribute effectively to disease surveillance and control systems. Two main approaches are classically used to understand and predict mosquito abundance in space and time, namely empirical (or statistical) and process-based models. In this work, we used both approaches to model the population dynamics in Reunion Island of the 'Tiger mosquito', Aedes albopictus, a vector of dengue and chikungunya viruses, using rainfall and temperature data. We aimed to i) evaluate and compare the two types of models, and ii) develop an operational tool that could be used by public health authorities and vector control services. Our results showed that Ae. albopictus dynamics in Reunion Island are driven by both rainfall and temperature with a non-linear relationship. The predictions of the two approaches were consistent with the observed abundances of Ae. albopictus aquatic stages. An operational tool with a user-friendly interface was developed, allowing the creation of maps of Ae. albopictus densities over the whole territory using meteorological data collected from a network of weather stations. It is now routinely used by the services in charge of vector control in Reunion Island.


Subject(s)
Aedes/physiology , Models, Biological , Mosquito Control , Mosquito Vectors/physiology , Animals , Hot Temperature , Humans , Population Dynamics , Rain
12.
Parasit Vectors ; 12(1): 562, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31775850

ABSTRACT

BACKGROUND: Reunion Island regularly faces outbreaks of epizootic haemorrhagic disease (EHD) and bluetongue (BT), two viral diseases transmitted by haematophagous midges of the genus Culicoides (Diptera: Ceratopogonidae) to ruminants. To date, five species of Culicoides are recorded in Reunion Island in which the first two are proven vector species: Culicoides bolitinos, C. imicola, C. enderleini, C. grahamii and C. kibatiensis. Meteorological and environmental factors can severely constrain Culicoides populations and activities and thereby affect dispersion and intensity of transmission of Culicoides-borne viruses. The aim of this study was to describe and predict the temporal dynamics of all Culicoides species present in Reunion Island. METHODS: Between 2016 and 2018, 55 biweekly Culicoides catches using Onderstepoort Veterinary Institute traps were set up in 11 sites. A hurdle model (i.e. a presence/absence model combined with an abundance model) was developed for each species in order to determine meteorological and environmental drivers of presence and abundance of Culicoides. RESULTS: Abundance displayed very strong heterogeneity between sites. Average Culicoides catch per site per night ranged from 4 to 45,875 individuals. Culicoides imicola was dominant at low altitude and C. kibatiensis at high altitude. A marked seasonality was observed for the three other species with annual variations. Twelve groups of variables were tested. It was found that presence and/or abundance of all five Culicoides species were driven by common parameters: rain, temperature, vegetation index, forested environment and host density. Other parameters such as wind speed and farm building opening size governed abundance level of some species. In addition, Culicoides populations were also affected by meteorological parameters and/or vegetation index with different lags of time, suggesting an impact on immature stages. Taking into account all the parameters for the final hurdle model, the error rate by Normalized Root mean Square Error ranged from 4.4 to 8.5%. CONCLUSIONS: To our knowledge, this is the first study to model Culicoides population dynamics in Reunion Island. In the absence of vaccination and vector control strategies, determining periods of high abundance of Culicoides is a crucial first step towards identifying periods at high risk of transmission for the two economically important viruses they transmit.


Subject(s)
Ceratopogonidae/physiology , Insect Vectors/physiology , Models, Statistical , Animals , Indian Ocean , Population Dynamics , Rain , Reunion , Seasons , Temperature
13.
Ecol Evol ; 9(7): 4181-4191, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31015997

ABSTRACT

Bats are the second most species-rich Mammalian order and provide a wide range of ecologically important and economically significant ecosystem services. Nipah virus is a zoonotic emerging infectious disease for which pteropodid bats have been identified as a natural reservoir. In Cambodia, Nipah virus circulation has been reported in Pteropus lylei, but little is known about the spatial distribution of the species and the associated implications for conservation and public health.We deployed Global Positioning System (GPS) collars on 14 P. lylei to study their movements and foraging behavior in Cambodia in 2016. All of the flying foxes were captured from the same roost, and GPS locations were collected for 1 month. The habitats used by each bat were characterized through ground-truthing, and a spatial distribution model was developed of foraging sites.A total of 13,643 valid locations were collected during the study. Our study bats flew approximately 20 km from the roost each night to forage. The maximum distance traveled per night ranged from 6.88-105 km and averaged 28.3 km. Six of the 14 bats visited another roost for at least one night during the study, including one roost located 105 km away.Most foraging locations were in residential areas (53.7%) followed by plantations (26.6%). Our spatial distribution model confirmed that residential areas were the preferred foraging habitat for P. lylei, although our results should be interpreted with caution due to the limited number of individuals studied. Synthesis and applications: Our findings suggest that the use of residential and agricultural habitats by P. lylei may create opportunities for bats to interact with humans and livestock. They also suggest the importance of anthropogenic habitats for conservation of this vulnerable and ecologically important group in Cambodia. Our mapping of the probability of occurrence of foraging sites will help identification of areas where public awareness should be promoted regarding the ecosystem services provided by flying foxes and potential for disease transmission through indirect contact.

14.
Ecol Appl ; 29(4): e01886, 2019 06.
Article in English | MEDLINE | ID: mdl-30986339

ABSTRACT

The reduction in biodiversity from land use change due to urbanization and agricultural intensification appears to be linked to major epidemiological changes in many human diseases. Increasing disease risks and the emergence of novel pathogens result from increased contact among wildlife, domesticated animals, and humans. We investigated the relationship between human alteration of the environment and the occurrence of generalist and synanthropic rodent species in relation to the diversity and prevalence of rodent-borne pathogens in Southeast Asia, a hotspot of threatened and endangered species, and a foci of emerging infectious diseases. We used data from an extensive pathogen survey of rodents from seven sites in mainland Southeast Asia in conjunction with past and present land cover analyses. At low spatial resolutions, we found that rodent-borne pathogen richness is negatively associated with increasing urbanization, characterized by increased habitat fragmentation, agriculture cover and deforestation. However, at a finer spatial resolution, we found that some major pathogens are favored by environmental characteristics associated with human alteration including irrigation, habitat fragmentation, and increased agricultural land cover. In addition, synanthropic rodents, many of which are important pathogen reservoirs, were associated with fragmented and human-dominated landscapes, which may ultimately enhance the opportunities for zoonotic transmission and human infection by some pathogens.


Subject(s)
Rodent Diseases , Animals , Asia, Southeastern , Biodiversity , Ecosystem , Humans , Rodentia
15.
Front Vet Sci ; 6: 455, 2019.
Article in English | MEDLINE | ID: mdl-31921913

ABSTRACT

Peste des petits ruminants virus (PPRV), responsible for peste des petits ruminants (PPR), is widely circulating in Africa and Asia. The disease is a huge burden for the economy and development of the affected countries. In Eastern Africa, the disease is considered endemic. Because of the geographic proximity and existing trade between eastern African countries and the Comoros archipelago, the latter is at risk of introduction and spread, and the first PPR outbreaks occurred in the Union of the Comoros in 2012. The objective of this study was to map the areas suitable for PPR occurrence and spread in the Union of the Comoros and four eastern African countries, namely Ethiopia, Uganda, Kenya, and Tanzania. A Geographic Information System (GIS)-based Multicriteria Evaluation (MCE) was developed. Risk factors for PPR occurrence and spread, and their relative importance, were identified using literature review and expert-based knowledge. Corresponding geographic data were collected, standardized, and combined based on a weighted linear combination to obtain PPR suitability maps. The accuracy of the maps was assessed using outbreak data from the EMPRES database and a ROC curve analysis. Our model showed an excellent ability to distinguish between absence and presence of outbreaks in Eastern Africa (AUC = 0.907; 95% CI [0.820-0.994]), and a very good performance in the Union of the Comoros (AUC = 0.889, 95% CI: [0.694-1]). These results highlight the efficiency of the GIS-MCE method, which can be applied at different geographic scales: continental, national and local. The resulting maps provide decision support tools for implementation of disease surveillance and control measures, thus contributing to the PPR eradication goal of OIE and FAO by 2030.

16.
Parasit Vectors ; 11(1): 27, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29316967

ABSTRACT

BACKGROUND: Many zoonotic infectious diseases have emerged and re-emerged over the last two decades. There has been a significant increase in vector-borne diseases due to climate variations that lead to environmental changes favoring the development and adaptation of vectors. This study was carried out to improve knowledge of the ecology of mosquito vectors involved in the transmission of Rift Valley fever virus (RVFV) in Senegal. METHODS: An entomological survey was conducted in three Senegalese agro-systems, Senegal River Delta (SRD), Senegal River Valley (SRV) and Ferlo, during the rainy season (July to November) of 2014 and 2015. Mosquitoes were trapped using CDC light traps set at ten sites for two consecutive nights during each month of the rainy season, for a total of 200 night-traps. Ecological indices were calculated to characterize the different populations of RVFV mosquito vectors. Generalized linear models with mixed effects were used to assess the influence of climatic conditions on the abundance of RVFV mosquito vectors. RESULTS: A total of 355,408 mosquitoes belonging to 7 genera and 35 species were captured in 200 night-traps. RVFV vectors represented 89.02% of the total, broken down as follows: Ae. vexans arabiensis (31.29%), Cx. poicilipes (0.6%), Cx. tritaeniorhynchus (33.09%) and Ma. uniformis (24.04%). Comparison of meteorological indices (rainfall, temperature, relative humidity), abundances and species diversity indicated that there were no significant differences between SRD and SRV (P = 0.36) while Ferlo showed significant differences with both (P < 0.001). Mosquito collection increased significantly with temperature for Ae. vexans arabiensis (P < 0.001), Cx. tritaeniorhynchus (P = 0.04) and Ma. uniformis (P = 0.01), while Cx. poicilipes decreased (P = 0.003). Relative humidity was positively and significantly associated with the abundances of Ae. vexans arabiensis (P < 0.001), Cx. poicilipes (P = 0.01) and Cx. tritaeniorhynchus (P = 0.007). Rainfall had a positive and significant effect on the abundances of Ae. vexans arabiensis (P = 0.005). The type of biotope (temporary ponds, river or lake) around the trap points had a significant effect on the mosquito abundances (P < 0.001). CONCLUSIONS: In terms of species diversity, the SRD and SRV ecosystems are similar to each other and different from that of Ferlo. Meteorological indices and the type of biotope (river, lake or temporary pond) have significant effects on the abundance of RVFV mosquito vectors.


Subject(s)
Biodiversity , Culicidae/growth & development , Mosquito Vectors/growth & development , Population Dynamics , Animals , Culicidae/classification , Entomology/methods , Humidity , Mosquito Vectors/classification , Seasons , Senegal , Temperature , Weather
17.
PLoS One ; 12(10): e0185962, 2017.
Article in English | MEDLINE | ID: mdl-29023472

ABSTRACT

The structural risk of West Nile Disease results from the usual functioning of the socio-ecological system, which may favour the introduction of the pathogen, its circulation and the occurrence of disease cases. Its geographic variations result from the local interactions between three components: (i) reservoir hosts, (ii) vectors, both characterized by their diversity, abundance and competence, (iii) and the socio-economic context that impacts the exposure of human to infectious bites. We developed a model of bird-borne structural risk of West Nile Virus (WNV) circulation in Europe, and analysed the association between the geographic variations of this risk and the occurrence of WND human cases between 2002 and 2014. A meta-analysis of WNV serosurveys conducted in wild bird populations was performed to elaborate a model of WNV seropositivity in European bird species, considered a proxy for bird exposure to WNV. Several eco-ethological traits of bird species were linked to seropositivity and the statistical model adequately fitted species-specific seropositivity data (area under the ROC curve: 0.85). Combined with species distribution maps, this model allowed deriving geographic variations of the bird-borne structural risk of WNV circulation. The association between this risk, and the occurrence of WND human cases across the European Union was assessed. Geographic risk variations of bird-borne structural risk allowed predicting WND case occurrence in administrative districts of the EU with a sensitivity of 86% (95% CI: 0.79-0.92), and a specificity of 68% (95% CI: 0.66-0.71). Disentangling structural and conjectural health risks is important for public health managers as risk mitigation procedures differ according to risk type. The results obtained show promise for the prevention of WND in Europe. Combined with analyses of vector-borne structural risk, they should allow designing efficient and targeted prevention measures.


Subject(s)
Bird Diseases/epidemiology , Birds/virology , West Nile Fever/epidemiology , West Nile virus , Animals , Bird Diseases/virology , Europe , Humans , Risk Factors , West Nile Fever/veterinary , West Nile virus/pathogenicity
18.
Ecohealth ; 14(3): 474-489, 2017 09.
Article in English | MEDLINE | ID: mdl-28584951

ABSTRACT

West Nile disease, caused by the West Nile virus (WNV), is a mosquito-borne zoonotic disease affecting humans and horses that involves wild birds as amplifying hosts. The mechanisms of WNV transmission remain unclear in Europe where the occurrence of outbreaks has dramatically increased in recent years. We used a dataset on the competence, distribution, abundance, diversity and dispersal of wild bird hosts and mosquito vectors to test alternative hypotheses concerning the transmission of WNV in Southern France. We modelled the successive processes of introduction, amplification, dispersal and spillover of WNV to incidental hosts based on host-vector contact rates on various land cover types and over four seasons. We evaluated the relative importance of the mechanisms tested using two independent serological datasets of WNV antibodies collected in wild birds and horses. We found that the same transmission processes (seasonal virus introduction by migratory birds, Culex modestus mosquitoes as amplifying vectors, heterogeneity in avian host competence, absence of 'dilution effect') best explain the spatial variations in WNV seroprevalence in the two serological datasets. Our results provide new insights on the pathways of WNV introduction, amplification and spillover and the contribution of bird and mosquito species to WNV transmission in Southern France.


Subject(s)
Animals, Wild/virology , Birds/virology , Culex/virology , Disease Outbreaks/statistics & numerical data , Horses/virology , West Nile Fever/transmission , Zoonoses/transmission , Animals , France/epidemiology , Humans , Seroepidemiologic Studies , West Nile Fever/epidemiology , West Nile virus/isolation & purification , Zoonoses/epidemiology
19.
Sci Rep ; 7: 39870, 2017 01 04.
Article in English | MEDLINE | ID: mdl-28051125

ABSTRACT

The force of infection (FOI) is one of the key parameters describing the dynamics of transmission of vector-borne diseases. Following the occurrence of two major outbreaks of Rift Valley fever (RVF) in Madagascar in 1990-91 and 2008-09, recent studies suggest that the pattern of RVF virus (RVFV) transmission differed among the four main eco-regions (East, Highlands, North-West and South-West). Using Bayesian hierarchical models fitted to serological data from cattle of known age collected during two surveys (2008 and 2014), we estimated RVF FOI and described its variations over time and space in Madagascar. We show that the patterns of RVFV transmission strongly differed among the eco-regions. In the North-West and Highlands regions, these patterns were synchronous with a high intensity in mid-2007/mid-2008. In the East and South-West, the peaks of transmission were later, between mid-2008 and mid-2010. In the warm and humid northwestern eco-region favorable to mosquito populations, RVFV is probably transmitted all year-long at low-level during inter-epizootic period allowing its maintenance and being regularly introduced in the Highlands through ruminant trade. The RVF surveillance of animals of the northwestern region could be used as an early warning indicator of an increased risk of RVF outbreak in Madagascar.


Subject(s)
Rift Valley Fever/epidemiology , Animals , Bayes Theorem , Cattle , Culicidae/physiology , Disease Outbreaks , Madagascar/epidemiology , Mosquito Vectors/growth & development , Mosquito Vectors/virology , Rift Valley Fever/pathology , Rift Valley Fever/transmission , Rift Valley fever virus/immunology , Rift Valley fever virus/pathogenicity , Seroepidemiologic Studies
20.
PLoS Negl Trop Dis ; 10(9): e0004999, 2016 09.
Article in English | MEDLINE | ID: mdl-27631374

ABSTRACT

Rift Valley fever (RVF), a mosquito-borne disease affecting ruminants and humans, is one of the most important viral zoonoses in Africa. The objective of the present study was to develop a geographic knowledge-based method to map the areas suitable for RVF amplification and RVF spread in four East African countries, namely, Kenya, Tanzania, Uganda and Ethiopia, and to assess the predictive accuracy of the model using livestock outbreak data from Kenya and Tanzania. Risk factors and their relative importance regarding RVF amplification and spread were identified from a literature review. A numerical weight was calculated for each risk factor using an analytical hierarchy process. The corresponding geographic data were collected, standardized and combined based on a weighted linear combination to produce maps of the suitability for RVF transmission. The accuracy of the resulting maps was assessed using RVF outbreak locations in livestock reported in Kenya and Tanzania between 1998 and 2012 and the ROC curve analysis. Our results confirmed the capacity of the geographic information system-based multi-criteria evaluation method to synthesize available scientific knowledge and to accurately map (AUC = 0.786; 95% CI [0.730-0.842]) the spatial heterogeneity of RVF suitability in East Africa. This approach provides users with a straightforward and easy update of the maps according to data availability or the further development of scientific knowledge.


Subject(s)
Disease Outbreaks , Geographic Information Systems , Rift Valley Fever/epidemiology , Rift Valley Fever/transmission , Zoonoses/epidemiology , Africa, Eastern , Animals , Culicidae/virology , Data Accuracy , Humans , Livestock/virology , ROC Curve , Rift Valley fever virus , Risk Factors , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...