Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Intensive Care Med ; 38(12): 1151-1157, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37415515

ABSTRACT

OBJECTIVES: To investigate discordance in oxy-hemoglobin saturation measured both by pulse oximetry (SpO2) and arterial blood gas (ABG, SaO2) among critically ill coronavirus disease 2019 (COVID-19(+)) patients compared to COVID-19(-) patients. METHODS: Paired SpO2 and SaO2 readings were collected retrospectively from consecutive adult admissions to four critical care units in the United States between March and May 2020. The primary outcome was the rate of discordance (|SaO2-SpO2|>4%) in COVID-19(+) versus COVID-19(-) patients. The odds each cohort could have been incorrectly categorized as having a PaO2/FiO2 above or below 150 by their SpO2: Fractional inhaled oxygen ratio (pulse oximetry-derived oxyhemoglobin saturation:fraction of inspired oxygen ratio [SF]) was examined. A multivariate regression analysis assessed confounding by clinical differences between cohorts including pH, body temperature, renal replacement therapy at time of blood draw, and self-identified race. RESULTS: There were 263 patients (173 COVID-19(+)) included. The rate of saturation discordance between SaO2 and SpO2 in COVID-19(+) patients was higher than in COVID-19(-) patients (27.9% vs 16.7%, odds ratio [OR] 1.94, 95% confidence interval [CI]: 1.11 to 2.27). The average difference between SaO2 and SpO2 for COVID-19(+) patients was -1.24% (limits of agreement, -13.6 to 11.1) versus -0.11 [-10.3 to 10.1] for COVID-19(-) patients. COVID-19(+) patients had higher odds (OR: 2.61, 95% CI: 1.14-5.98) of having an SF that misclassified that patient as having a PaO2:FiO2 ratio above or below 150. There was not an association between discordance and the confounders of pH, body temperature, or renal replacement therapy at time of blood draw. After controlling for self-identified race, the association between COVID-19 status and discordance was lost. CONCLUSIONS: Pulse oximetry was discordant with ABG more often in critically ill COVID-19(+) than COVID-19(-) patients. However, these findings appear to be driven by racial differences between cohorts.


Subject(s)
COVID-19 , Critical Illness , Adult , Humans , Retrospective Studies , Critical Illness/therapy , Oxygen Saturation , Oximetry , Oxygen , Hypoxia
2.
Front Microbiol ; 7: 889, 2016.
Article in English | MEDLINE | ID: mdl-27379034

ABSTRACT

Organic fertilizer application is often touted as an economical and effective method to increase soil fertility. However, this amendment may increase dissolved organic carbon (DOC) runoff into downstream aquatic ecosystems and may consequently alter aquatic microbial community. We focused on understanding the effects of DOC runoff from soils amended with compost, vermicompost, or biochar on the aquatic microbial community of a tropical reservoir. Runoff collected from a series of rainfall simulations on soils amended with different organic fertilizers was incubated for 16 days in a series of 200 L mesocosms filled with water from a downstream reservoir. We applied 454 high throughput pyrosequencing for bacterial 16S rRNA genes to analyze microbial communities. After 16 days of incubation, the richness and evenness of the microbial communities present decreased in the mesocosms amended with any organic fertilizers, except for the evenness in the mesocosms amended with compost runoff. In contrast, they increased in the reservoir water control and soil-only amended mesocosms. Community structure was mainly affected by pH and DOC concentration. Compared to the autochthonous organic carbon produced during primary production, the addition of allochthonous DOC from these organic amendments seemed to exert a stronger effect on the communities over the period of incubation. While the Proteobacteria and Actinobacteria classes were positively associated with higher DOC concentration, the number of sequences representing key bacterial groups differed between mesocosms particularly between the biochar runoff addition and the compost or vermi-compost runoff additions. The genera of Propionibacterium spp. and Methylobacterium spp. were highly abundant in the compost runoff additions suggesting that they may represent sentinel species of complex organic carbon inputs. Overall, this work further underlines the importance of studying the off-site impacts of organic fertilizers as their impact on downstream aquatic systems is not negligible.

SELECTION OF CITATIONS
SEARCH DETAIL
...