Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Case Rep Ophthalmol ; 15(1): 230-237, 2024.
Article in English | MEDLINE | ID: mdl-38500542

ABSTRACT

Introduction: The GNB1 (guanine nucleotide-binding protein, ß1) gene encodes for the ubiquitous ß1 subunit of heterotrimeric G proteins, which are associated with G-protein-coupled receptors (GPCRs). GNB1 mutations cause a neurodevelopmental disorder characterized by a broad clinical spectrum. A novel variant has recently been confirmed in a case of rod-cone dystrophy. Case Presentation: We describe the second confirmed case of a classical rod-cone dystrophy associated with a mutation located in exon 6 of GNB1 [NM_002074.5:c.217G>C, p.(Ala73Pro)] in a 56-year-old patient also presenting mild intellectual disability, attention deficit/hyperactivity disorder, and truncal obesity. Conclusion: This paper confirms the role of GNB1 in the pathogenesis of a classic rod-cone dystrophy and highlights the importance of including this gene in the genetic analysis panel for inherited retinal diseases.

2.
Am J Hum Genet ; 111(2): 393-402, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38272031

ABSTRACT

Sterile alpha motif domain containing 7 (SAMD7) is a component of the Polycomb repressive complex 1, which inhibits transcription of many genes, including those activated by the transcription factor Cone-Rod Homeobox (CRX). Here we report bi-allelic mutations in SAMD7 as a cause of autosomal-recessive macular dystrophy with or without cone dysfunction. Four of these mutations affect splicing, while another mutation is a missense variant that alters the repressive effect of SAMD7 on CRX-dependent promoter activity, as shown by in vitro assays. Immunostaining of human retinal sections revealed that SAMD7 is localized in the nuclei of both rods and cones, as well as in those of cells belonging to the inner nuclear layer. These results place SAMD7 as a gene crucial for human retinal function and demonstrate a significant difference in the role of SAMD7 between the human and the mouse retina.


Subject(s)
Eye Abnormalities , Macular Degeneration , Mice , Animals , Humans , Trans-Activators/genetics , Homeodomain Proteins/genetics , Retina , Mutation/genetics , Macular Degeneration/genetics
3.
Ophthalmic Res ; 67(1): 172-182, 2024.
Article in English | MEDLINE | ID: mdl-38160664

ABSTRACT

INTRODUCTION: Mutational screening of inherited retinal disorders is prerequisite for gene targeted therapy. Our aim was to report and analyze the proportions of mutations in inherited retinal disease (IRD)-causing genes from a single center in Switzerland in order to describe the distribution of IRDs in Western Switzerland. METHODS: We conducted a retrospective study of patient records. Criteria for inclusion were residence in Western Switzerland for patients and relatives presenting a clinical diagnosis of IRDs and an established molecular diagnosis managed by the genetics service of the Jules-Gonin Eye Hospital (JGEH) of Lausanne between January 2002 and December 2022. We initially investigated the IRD phenotypes in all patients (full cohort) with a clinical diagnosis, then calculated the distribution of IRD gene mutations in the entire cohort (genetically determined cohort). We analyzed a sub-group that comprised pediatric patients (≤18 years of age). In addition, we calculated the distribution of gene mutations within the most represented IRDs. Comprehensive gene screening was performed using a combined approach of different generation of DNA microarray analysis, direct sequencing, and Sanger sequencing. RESULTS: The full cohort comprised 899 individuals from 690 families with a clinical diagnosis of IRDs. We identified 400 individuals from 285 families with an elucidated molecular diagnosis (variants in 84 genes) in the genetically determined cohort. The pediatric cohort included 89 individuals from 65 families with an elucidated molecular diagnosis. The molecular diagnosis rate for the genetically determined cohort was 58.2% (family ratio) and the 5 most frequently implicated genes per family were ABCA4 (11.6%), USH2A (7.4%), EYS (6.7%), PRPH2 (6.3%), and BEST1 (4.6%). The pediatric cohort had a family molecular diagnosis rate of 64.4% and the 5 most common mutated genes per family were RS1 (9.2%), ABCA4 (7.7%), CNGB3 (7.7%), CACNA1F (6.2%), CEP290 (4.6%). CONCLUSIONS: This study describes the genetic mutation landscape of IRDs in Western Switzerland in order to quantify their disease burden and contribute to a better orientation of the development of future gene targeted therapies.


Subject(s)
Eye Proteins , Mutation , Retinitis Pigmentosa , Humans , Retrospective Studies , Male , Female , Switzerland/epidemiology , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/diagnosis , Child , Adult , Adolescent , DNA Mutational Analysis , Middle Aged , Eye Proteins/genetics , Child, Preschool , Pedigree , Young Adult , Aged , Phenotype , Genetic Testing/methods , Infant
SELECTION OF CITATIONS
SEARCH DETAIL