Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 16(5): e0010361, 2022 05.
Article in English | MEDLINE | ID: mdl-35613183

ABSTRACT

BACKGROUND: Japanese Encephalitis (JE) is known for its high case fatality ratio (CFR) and long-term neurological sequelae. Over the years, efforts in JE treatment and control might change the JE fatality risk. However, previous estimates were from 10 years ago, using data from cases in the 10 years before this. Estimating JE disease severity is challenging because data come from countries with different JE surveillance systems, diagnostic methods, and study designs. Without precise and timely JE disease severity estimates, there is continued uncertainty about the JE disease burden and the effect of JE vaccination. METHODOLOGY: We performed a systematic review to collate age-stratified JE fatality and morbidity data. We used a stepwise model selection with BIC as the selection criteria to identify JE CFR drivers. We used stacked regression, to predict country-specific JE CFR from 1961 to 2030. JE morbidity estimates were grouped from similar study designs to estimate the proportion of JE survivors with long-term neurological sequelae. PRINCIPAL FINDINGS: We included 82 and 50 peer-reviewed journal articles published as of March 06 2021 for JE fatality and morbidity with 22 articles in both analyses. Results suggested overall JE CFR estimates of 26% (95% CI 22, 30) in 1961-1979, 20% (95% CI 17, 24) in 1980-1999, 14% (95% CI 11, 17) in 2000-2018, and 14% (95% CI 11, 17) in 2019-2030. Holding other variables constant, we found that JE fatality risk decreased over time (OR: 0.965; 95% CI: 0.947-0.983). Younger JE cases had a slightly higher JE fatality risk (OR: 1.012; 95% CI: 1.003-1.021). The odds of JE fatality in countries with JE vaccination is 0.802 (90% CI: 0.653-0.994; 95% CI: 0.62-1.033) times lower than the odds in countries without JE vaccination. Ten percentage increase in the percentage of rural population to the total population was associated with 15.35% (95% CI: 7.71, 22.57) decrease in JE fatality odds. Ten percentage increase in population growth rate is associated with 3.71% (90% CI: 0.23, 7.18; 95% CI: -0.4, 8.15) increase in JE fatality odds. Adjusting for the effect of year, rural population percent, age of JE cases, and population growth rate, we estimated that there was a higher odds of JE fatality in India compared to China. (OR: 5.46, 95% CI: 3.61-8.31). Using the prediction model we found that, in 2000-2018, Brunei, Pakistan, and Timor-Leste were predicted to have the highest JE CFR of 20%. Bangladesh, Guam, Pakistan, Philippines, and Vietnam had projected JE CFR over 20% for after 2018, whereas the projected JE CFRs were below 10% in China, Indonesia, Cambodia, Myanmar, Malaysia, and Thailand. For disability, we estimated that 36% (min-max 0-85) JE patients recovered fully at hospital discharge. One year after hospital discharge, 46% (min-max 0%-97%) JE survivors were estimated to live normally but 49% (min-max 3% - 86%)till had neurological sequelae. CONCLUSION: JE CFR estimates were lower than 20% after 2000. Our study provides an updated estimation of CFR and proportion of JE cases with long-term neurological sequelae that could help to refine cost-benefit assessment for JE control and elimination programs.


Subject(s)
Encephalitis, Japanese , Japanese Encephalitis Vaccines , China , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/prevention & control , Humans , Morbidity , Philippines/epidemiology , Thailand
2.
Elife ; 102021 07 13.
Article in English | MEDLINE | ID: mdl-34253291

ABSTRACT

Background: Vaccination is one of the most effective public health interventions. We investigate the impact of vaccination activities for Haemophilus influenzae type b, hepatitis B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, rotavirus, rubella, Streptococcus pneumoniae, and yellow fever over the years 2000-2030 across 112 countries. Methods: Twenty-one mathematical models estimated disease burden using standardised demographic and immunisation data. Impact was attributed to the year of vaccination through vaccine-activity-stratified impact ratios. Results: We estimate 97 (95%CrI[80, 120]) million deaths would be averted due to vaccination activities over 2000-2030, with 50 (95%CrI[41, 62]) million deaths averted by activities between 2000 and 2019. For children under-5 born between 2000 and 2030, we estimate 52 (95%CrI[41, 69]) million more deaths would occur over their lifetimes without vaccination against these diseases. Conclusions: This study represents the largest assessment of vaccine impact before COVID-19-related disruptions and provides motivation for sustaining and improving global vaccination coverage in the future. Funding: VIMC is jointly funded by Gavi, the Vaccine Alliance, and the Bill and Melinda Gates Foundation (BMGF) (BMGF grant number: OPP1157270 / INV-009125). Funding from Gavi is channelled via VIMC to the Consortium's modelling groups (VIMC-funded institutions represented in this paper: Imperial College London, London School of Hygiene and Tropical Medicine, Oxford University Clinical Research Unit, Public Health England, Johns Hopkins University, The Pennsylvania State University, Center for Disease Analysis Foundation, Kaiser Permanente Washington, University of Cambridge, University of Notre Dame, Harvard University, Conservatoire National des Arts et Métiers, Emory University, National University of Singapore). Funding from BMGF was used for salaries of the Consortium secretariat (authors represented here: TBH, MJ, XL, SE-L, JT, KW, NMF, KAMG); and channelled via VIMC for travel and subsistence costs of all Consortium members (all authors). We also acknowledge funding from the UK Medical Research Council and Department for International Development, which supported aspects of VIMC's work (MRC grant number: MR/R015600/1).JHH acknowledges funding from National Science Foundation Graduate Research Fellowship; Richard and Peggy Notebaert Premier Fellowship from the University of Notre Dame. BAL acknowledges funding from NIH/NIGMS (grant number R01 GM124280) and NIH/NIAID (grant number R01 AI112970). The Lives Saved Tool (LiST) receives funding support from the Bill and Melinda Gates Foundation.This paper was compiled by all coauthors, including two coauthors from Gavi. Other funders had no role in study design, data collection, data analysis, data interpretation, or writing of the report. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication.


Subject(s)
Bacterial Infections/prevention & control , Bacterial Vaccines/therapeutic use , COVID-19 , Global Health , Models, Biological , SARS-CoV-2 , Bacterial Infections/epidemiology , Humans
3.
Eur J Med Chem ; 201: 112337, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32659605

ABSTRACT

With the aim to develop new chemical tools based on simplified natural metabolites to help deciphering the molecular mechanism of necroptosis, simplified benzazole fragments including 2-aminobenzimidazole and the 2-aminobenzothiazole analogs were prepared during the synthesis of the marine benzosceptrin B. Conpounds inhibiting the RIPK1 protein kinase were discovered. A library of 54 synthetic analogs were prepared and evaluated through a phenotypic screen using the inhibition of the necrotic cell death induced by TNF-α in human Jurkat T cells deficient for the FADD protein. This article reports the design, synthesis and biological evaluation of a series of 2-aminobenzazoles on the necroptotic cell death through the inhibition of RIPK1 protein kinase. The 2-aminobenzimidazole and 2-aminobenzothiazole platforms presented herein can serve as novel chemical tools to study the molecular regulation of necroptosis and further develop lead drug candidates for chronic pathologies involving necroptosis.


Subject(s)
Imidazoles/pharmacology , Necroptosis/drug effects , Protein Kinase Inhibitors/pharmacology , Pyrroles/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Binding Sites , Drug Design , Fas-Associated Death Domain Protein/deficiency , Humans , Imidazoles/chemical synthesis , Imidazoles/metabolism , Jurkat Cells , Molecular Docking Simulation , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Pyrroles/chemical synthesis , Pyrroles/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/chemistry , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Structure-Activity Relationship
4.
Org Lett ; 16(3): 920-3, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24479902

ABSTRACT

A new strategy for the synthesis of 2-aminobenzimidazol-6-ols via a reaction of quinones with guanidine derivatives is reported. Sequential application of this methodology provided a simple access to the first benzosceptrin analogue bearing a bis-2-aminoimidazole moiety. A concomitant addition of two guanidines to the naphtho[1',2':4,5]imidazo[1,2-a]pyrimidine-5,6-dione, which includes the redox neutral debenzylation and guanidine-assisted cleavage of the 2-aminopyrimidine part resulted in the synthesis of the free challenging contiguous bis-2-aminoimidazole moiety of benzosceprins in one step.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/chemical synthesis , Guanidines/chemistry , Imidazoles/chemistry , Imidazoles/chemical synthesis , Naphthalenes/chemistry , Pyrroles/chemistry , Quinones/chemistry , Molecular Structure
5.
Org Lett ; 16(1): 310-3, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24308719

ABSTRACT

A general, straightforward, and atom-economical three-component synthesis of thioamides from alkynes, elemental sulfur, and aliphatic amines has been developed.


Subject(s)
Alkynes/chemistry , Amines/chemistry , Sulfur/chemistry , Thioamides/chemical synthesis , Molecular Structure , Thioamides/chemistry
6.
Org Lett ; 14(12): 3202-5, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22676810

ABSTRACT

A novel method of transamidation of carboxamides with amines using catalytic amounts of readily available boric acid under solvent-free conditions has been developed. The scope of the methodology has been demonstrated with (i) primary, secondary, and tertiary amides and phthalimide and (ii) aliphatic, aromatic, cyclic, acyclic, primary, and secondary amines.


Subject(s)
Amides/chemistry , Amines/chemistry , Boric Acids/chemistry , Amination , Catalysis , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...