Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sustain Chem Eng ; 11(31): 11437-11458, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37564955

ABSTRACT

Nanostructured products are an actively growing area for food research, but there is little information on the sustainability of processes used to make these products. In this Review, we advocate for selection of sustainable process technologies during initial stages of laboratory-scale developments of nanofoods. We show that selection is assisted by predictive sustainability assessment(s) based on conventional technologies, including exploratory ex ante and "anticipatory" life-cycle assessment. We demonstrate that sustainability assessments for conventional food process technologies can be leveraged to design nanofood process concepts and technologies. We critically review emerging nanostructured food products including encapsulated bioactive molecules and processes used to structure these foods at laboratory, pilot, and industrial scales. We apply a rational method via learning lessons from sustainability of unit operations in conventional food processing and critically apportioned lessons between emerging and conventional approaches. We conclude that this method provides a quantitative means to incorporate sustainability during process design for nanostructured foods. Findings will be of interest and benefit to a range of food researchers, engineers, and manufacturers of process equipment.

2.
Adv Healthc Mater ; 12(23): e2203363, 2023 09.
Article in English | MEDLINE | ID: mdl-37039561

ABSTRACT

The use of microfluidics for oil-in-water (O/W) nanoemulsification via spontaneous self-assembly is demonstrated. As this is known to be a longish process, both single- and multicontact microfluidic reactors are tested, the latter providing a longsome, constant microfluidic treatment to maintain advanced phase and interfacial mass transfer. Microfluidic devices provide strong advantages above conventional systems for spontaneous emulsification, with droplet sizes of 62 nm at desired surfactant-to-oil ratios (SOR) and a decrease of 90% in process time. Multicontact microfluidics have better performance than their single-contact counterparts, while critical aspects, e.g., process robustness, are also discussed. Ternary phase diagram analysis of the three components (oil, water, surfactant) allow to decide for the right mixing ratio and sequence of mixing steps for the nanoemulsions. Microfluidic spontaneous emulsification meets objective functions of the intended application to provide fortified beverages to astronauts in space exploration. In that viewpoint, an advantage is to achieve stable nanoemulsions at a level of concentrations much higher as compared to application (human intake), allowing a dilution factor to the final product of up to 100. This decreases notably the process time and allows for process flexibility, e.g., to dilute or tailor Earth-prepared nanoemulsion concentrate payloads in space.


Subject(s)
Microfluidics , Surface-Active Agents , Humans , Emulsions , Particle Size , Water
3.
Plant Physiol Biochem ; 196: 917-924, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36889231

ABSTRACT

Circular economy has become global priority, and fertigation make large contribution. Modern circular methodologies base their definitions, besides on waste minimisation and recovery, on the product usage U and lifetime L. We have modified a commonly used equation for the mass circularity indicator (MCI) to permit MCI determination for agricultural cultivation. We defined U as intensity for diverse investigated parameters of plant growth and L as the bioavailability period. In this way, we compute circularity metrics for the plantgrowth performance when exposed to three nanofertilizers and one biostimulant, as compared to no-use of micronutrients (control 1), and micronutrients supplied via conventional fertilizers (control 2). We determined an MCI of 0.839 for best nanofertilizer performance (1.000 denotes full circularity), while the MCI of conventional fertilizer was 0.364. Normalised to control 1, U was determined as 1.196, 1.121 and 1.149 for manganese, copper and iron-based nanofertilizers, respectively, while U was 1.709, 1.432, 1.424 and 1.259 for manganese, copper, iron nanofertilizers and gold biostimulant when normalised to control 2, respectively. Based on the learning of the plant growth experiments, a tailored process design is proposed for the use of nanoparticles with pre-conditioning, post-processing and recycling steps. A life cycle assessment shows that the additional use of pumps for this process design does not increase energy costs, while preserving environmental advantages related to the lower water usage of the nanofertilizers. Moreover, the impact of the losses of conventional fertilisers by missing absorption of plant roots, which is presumed to be lower for the nanofertilizers.


Subject(s)
Copper , Manganese , Agriculture/methods , Iron , Micronutrients
4.
ACS Med Chem Lett ; 13(8): 1231-1247, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35978686

ABSTRACT

Scientists from around the world are studying the effects of microgravity and cosmic radiation via the "off-Earth" International Space Station (ISS) laboratory platform. The ISS has helped scientists make discoveries that go beyond the basic understanding of Earth. Over 300 medical experiments have been performed to date, with the goal of extending the knowledge gained for the benefit of humanity. This paper gives an overview of these numerous space medical findings, critically identifies challenges and gaps, and puts the achievements into perspective toward long-term space traveling and also adding benefits to our home planet. The medical contents are trifold structured, starting with the well-being of space travelers (astronaut health studies), followed by medical formulation research under space conditions, and then concluding with a blueprint for space pharmaceutical manufacturing. The review covers essential elements of our Earth-based pharmaceutical research such as drug discovery, drug and formulation stability, drug-organ interaction, drug disintegration/bioavailability/pharmacokinetics, pathogen virulence, genome mutation, and body's resistance. The information compiles clinical, medicinal, biological, and chemical research as well as fundamentals and practical applications.

5.
Chemosphere ; 300: 134623, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35439489

ABSTRACT

Heterogeneous photocatalysis is a promising technology for eradicating organic, inorganic, and microbial pollutants in water and wastewater remediation. It is a more preferable method to other conventional wastewater treatment approaches on account of its low cost, environmental benignity, ability to proceed at ambient temperature and pressure conditions, and capability to completely degrade pollutants under appropriate conditions into environmentally safe products. In heterogeneous photocatalysis, pollutant removal is mainly induced by in-situ generated reactive radicals and their subsequent attack when energetic radiation impinges on the semiconductor catalyst. As such, for the effective and economical removal of wastewater pollutants, the employed catalyst should have high photonic efficiency, less toxic, abundant, chemically and photochemically stableand visible light active. Copper (II) oxide (CuO) is one among such promising compounds and its photocatalytic performance has been hampered primarily by rapid recombination and slow mobility of photogenerated charge carriers. So, this review provides an overview of the strategies adopted to mitigate the aforementioned drawbacks and also other operational parameters to boost its catalytic activity towards the elimination of toxic organic and inorganic metal ion contaminants in an aqueous media.


Subject(s)
Environmental Pollutants , Nanoparticles , Catalysis , Copper/chemistry , Wastewater
6.
Chem Soc Rev ; 50(21): 11979-12012, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34515721

ABSTRACT

Nanotechnology is increasingly being utilized to create advanced materials with improved or new functional attributes. Converting fertilizers into a nanoparticle-form has been shown to improve their efficacy but the current procedures used to fabricate nanofertilisers often have poor reproducibility and flexibility. Microfluidic systems, on the other hand, have advantages over traditional nanoparticle fabrication methods in terms of energy and materials consumption, versatility, and controllability. The increased controllability can result in the formation of nanoparticles with precise and complex morphologies (e.g., tuneable sizes, low polydispersity, and multi-core structures). As a result, their functional performance can be tailored to specific applications. This paper reviews the principles, formation, and applications of nano-enabled delivery systems fabricated using microfluidic approaches for the encapsulation, protection, and release of fertilizers. Controlled release can be achieved using two main routes: (i) nutrients adsorbed on nanosupports and (ii) nutrients encapsulated inside nanostructures. We aim to highlight the opportunities for preparing a new generation of highly versatile nanofertilisers using microfluidic systems. We will explore several main characteristics of microfluidically prepared nanofertilisers, including droplet formation, shell fine-tuning, adsorbate fine-tuning, and sustained/triggered release behavior.

7.
J Food Sci ; 86(9): 3762-3777, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34337748

ABSTRACT

Cold plasma is formed by the nonthermal ionization of gas into free electrons, ions, reactive atomic and molecular species, and ultraviolet (UV) radiation. This cold plasma can be used to alter the surface of solid and liquid foods, and it offers multiple advantages over traditional thermal treatments, such as no thermal damage and increased output variation (due to the various input parameters gas, power, plasma type, etc.). Cold plasma appears to have limited impact on the sensory and color properties, at lower power and treatment times, but there has been a statistically significant reduction in pH for most of the cold plasma treatments reviewed (p < 0.05). Carbohydrates (cross linking and glycosylation), lipids (oxidation), and proteins (secondary structure) are more significantly impacted due to cold plasma at higher intensities and longer treatment times. Although cold plasma treatments and food matrices can vary considerably, this review has identified the literary evidence of some of the influences and impacts of the vast array of cold plasma treatment parameters on the biomolecular and organoleptic properties of these foods. Due to the rapidly evolving nature of the field, we have also identified that authors prioritize the presentation of different information when publishing from different research areas. Therefore, we have proposed a number of key physical and chemical cold plasma parameters that should be considered for inclusion in all future publications in the field.


Subject(s)
Food , Plasma Gases , Carbohydrates/chemistry , Cold Temperature , Food Handling , Plasma Gases/pharmacology , Proteins/chemistry , Proteins/drug effects , Sensation
8.
Angew Chem Int Ed Engl ; 60(7): 3368-3388, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-31950574

ABSTRACT

For the in situ resource utilization (ISRU) of asteroids, the cost-mass conundrum needs to be solved, and technologies may need to be conceptualised from first principals. By using this approach, this Review seeks to illustrate how chemical process intensification can help with the development of disruptive technologies and business matters, how this might influence space-industry start-ups, and even industrial transformations on Earth. The disruptive technology considered is continuous microflow solvent extraction and, as another disruptive element therein, the use of ionic liquids. The space business considered is asteroid mining, as it is probably the most challenging resource site, and the focus is on its last step: the purification of adjacent metals (cobalt versus nickel). The key economic barrier is defined as the reduction in the amount of water used in the asteroid mining process. This Review suggests a pathway toward water savings up to the technological limit of the best Earth-based processes and their physical limits.

SELECTION OF CITATIONS
SEARCH DETAIL
...