Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Immunol ; 254: 109713, 2023 09.
Article in English | MEDLINE | ID: mdl-37516396

ABSTRACT

Due to unique advantages that allow high-dimensional tissue profiling, we postulated imaging mass cytometry (IMC) may shed novel insights on the molecular makeup of proliferative lupus nephritis (LN). This study interrogates the spatial expression profiles of 50 target proteins in LN and control kidneys. Proliferative LN glomeruli are marked by podocyte loss with immune infiltration dominated by CD45RO+, HLA-DR+ memory CD4 and CD8 T-cells, and CD163+ macrophages, with similar changes in tubulointerstitial regions. Macrophages are the predominant HLA-DR expressing antigen presenting cells with little expression elsewhere, while macrophages and T-cells predominate cellular crescents. End-stage sclerotic glomeruli are encircled by an acellular fibro-epithelial Bowman's space surrounded by immune infiltrates, all enmeshed in fibronectin. Proliferative LN also shows signs indicative of epithelial to mesenchymal plasticity of tubular cells and parietal epithelial cells. IMC enabled proteomics is a powerful tool to delineate the spatial architecture of LN at the protein level.


Subject(s)
Lupus Nephritis , Humans , Proteomics , Kidney Glomerulus/metabolism , Kidney/metabolism , Image Cytometry
2.
Front Immunol ; 13: 893899, 2022.
Article in English | MEDLINE | ID: mdl-35874767

ABSTRACT

Bruton tyrosine kinase (Btk) plays a vital role in activating and differentiating B-cells and regulating signaling in myeloid cells. Indeed, the potential use of Btk inhibitors in preventing lupus has been reported. Here, we extend these observations to 4 additional models of end-organ inflammation: (a) BWF1 lupus nephritis mice, (b) anti-GBM nephritis, (c) bleomycin-induced systemic sclerosis like skin disease, and (d) bleomycin-induced lung disease. In agreement with the previous studies, BTK inhibitor (BTKB66) treatment was effective in treating lupus nephritis in terms of reducing renal damage both functionally and histologically, accompanied by significant decrease in proteinuria. Both low-dose and high-dose BTKB66 profoundly blocked renal disease in the anti-GBM nephritis model, with efficacy that was comparable to that seen with dexamethasone. This study provides the first evidence that BTK inhibition has both therapeutic and preventative effects in bleomycin-induced SSc-like disease, in terms of reducing skin thickness, fibrosis, collagen deposition, and inflammation. Likewise, significantly lower lung inflammatory cell infiltration was observed after treatment with BTKB66. Therapeutic benefit was associated with lower numbers of macrophages, proliferating macrophages and activated T-cells in the respective injured organs. The observation that these immune cells play key roles in driving end organ inflammation in multiple systemic rheumatic diseases have broad implications for the use of BTKB66 in managing patients with systemic rheumatic diseases where multiple end organs are afflicted, including lupus and systemic sclerosis.


Subject(s)
Lupus Nephritis , Rheumatic Diseases , Scleroderma, Systemic , Agammaglobulinaemia Tyrosine Kinase , Animals , Bleomycin , Disease Models, Animal , Inflammation , Lupus Nephritis/chemically induced , Lupus Nephritis/drug therapy , Mice , Rheumatic Diseases/drug therapy , Scleroderma, Systemic/chemically induced , Scleroderma, Systemic/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...