Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
mSphere ; 6(3): e0017021, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34077262

ABSTRACT

Neutralizing antibodies are key determinants of protection from future infection, yet well-validated high-throughput assays for measuring titers of SARS-CoV-2-neutralizing antibodies are not generally available. Here, we describe the development and validation of IMMUNO-COV v2.0, a scalable surrogate virus assay, which titrates antibodies that block infection of Vero-ACE2 cells by a luciferase-encoding vesicular stomatitis virus displaying SARS-CoV-2 spike glycoproteins (VSV-SARS2-Fluc). Antibody titers, calculated using a standard curve consisting of stepped concentrations of SARS-CoV-2 spike monoclonal antibody, correlated closely (P < 0.0001) with titers obtained from a gold standard 50% plaque-reduction neutralization test (PRNT50%) performed using a clinical isolate of SARS-CoV-2. IMMUNO-COV v2.0 was comprehensively validated using data acquired from 242 assay runs performed over 7 days by five analysts, utilizing two separate virus lots, and 176 blood samples. Assay performance was acceptable for clinical use in human serum and plasma based on parameters including linearity, dynamic range, limit of blank and limit of detection, dilutional linearity and parallelism, precision, clinical agreement, matrix equivalence, clinical specificity and sensitivity, and robustness. Sufficient VSV-SARS2-Fluc virus reagent has been banked to test 5 million clinical samples. Notably, a significant drop in IMMUNO-COV v2.0 neutralizing antibody titers was observed over a 6-month period in people recovered from SARS-CoV-2 infection. Together, our results demonstrate the feasibility and utility of IMMUNO-COV v2.0 for measuring SARS-CoV-2-neutralizing antibodies in vaccinated individuals and those recovering from natural infections. Such monitoring can be used to better understand what levels of neutralizing antibodies are required for protection from SARS-CoV-2 and what booster dosing schedules are needed to sustain vaccine-induced immunity. IMPORTANCE Since its emergence at the end of 2019, SARS-CoV-2, the causative agent of COVID-19, has caused over 100 million infections and 2.4 million deaths worldwide. Recently, countries have begun administering approved COVID-19 vaccines, which elicit strong immune responses and prevent disease in most vaccinated individuals. A key component of the protective immune response is the production of neutralizing antibodies capable of preventing future SARS-CoV-2 infection. Yet, fundamental questions remain regarding the longevity of neutralizing antibody responses following infection or vaccination and the level of neutralizing antibodies required to confer protection. Our work is significant as it describes the development and validation of a scalable clinical assay that measures SARS-CoV-2-neutraling antibody titers. We have critical virus reagent to test over 5 million samples, making our assay well suited for widespread monitoring of SARS-CoV-2-neutralizing antibodies, which can in turn be used to inform vaccine dosing schedules and answer fundamental questions regarding SARS-CoV-2 immunity.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , High-Throughput Screening Assays/methods , Animals , Chlorocebus aethiops , Humans , Limit of Detection , Neutralization Tests/methods , Severity of Illness Index , Vero Cells
2.
bioRxiv ; 2020 May 27.
Article in English | MEDLINE | ID: mdl-32577655

ABSTRACT

We here describe the development and validation of IMMUNO-COV™, a high-throughput clinical test to quantitatively measure SARS-CoV-2-neutralizing antibodies, the specific subset of anti-SARS-CoV-2 antibodies that block viral infection. The test measures the capacity of serum or purified antibodies to neutralize a recombinant Vesicular Stomatitis Virus (VSV) encoding the SARS-CoV-2 spike glycoprotein. This recombinant virus (VSV-SARS-CoV-2-S-Δ19CT) induces fusion in Vero cell monolayers, which is detected as luciferase signal using a dual split protein (DSP) reporter system. VSV-SARS-CoV-2-S-Δ19CT infection was blocked by monoclonal α-SARS-CoV-2-spike antibodies and by plasma or serum from SARS-CoV-2 convalescing individuals. The assay exhibited 100% specificity in validation tests, and across all tests zero false positives were detected. In blinded analyses of 230 serum samples, only two unexpected results were observed based on available clinical data. We observed a perfect correlation between results from our assay and 80 samples that were also assayed using a commercially available ELISA. To quantify the magnitude of the anti-viral response, we generated a calibration curve by adding stepped concentrations of α-SARS-CoV-2-spike monoclonal antibody to pooled SARS-CoV-2 seronegative serum. Using the calibration curve and a single optimal 1:100 serum test dilution, we reliably measured neutralizing antibody levels in each test sample. Virus neutralization units (VNUs) calculated from the assay correlated closely (p < 0.0001) with PRNT EC50 values determined by plaque reduction neutralization test against a clinical isolate of SARS-CoV-2. Taken together, these results demonstrate that the IMMUNO-COV™ assay accurately quantitates SARS-CoV-2 neutralizing antibodies in human sera and therefore is a potentially valuable addition to the currently available serological tests. The assay can provide vital information for comparing immune responses to the various SARS-CoV-2 vaccines that are currently in development, or for evaluating donor eligibility in convalescent plasma therapy studies.

3.
Transfusion ; 57(12): 2836-2844, 2017 12.
Article in English | MEDLINE | ID: mdl-28880362

ABSTRACT

BACKGROUND: Laboratory and clinical evidence suggest that cold-stored platelets (CS-PLTs) might be preferable to room temperature platelets (RT-PLTs) for active bleeding. Ease of prehospital use plus potential hemostatic superiority led our facility to pursue approval of CS-PLTs for actively bleeding trauma patients. STUDY DESIGN AND METHODS: From November 18, 2013, through October 8, 2015, correspondence was exchanged between our facility, the AABB, and the US Food and Drug Administration (FDA). An initial AABB variance request was for 5-day CS-PLTs without agitation. The AABB deferred its decision pending FDA approval to use our platelet (PLT) bags for CS-PLTs. On March 27, 2015, the FDA approved 3-day CS-PLTs without agitation. On October 8, 2015, the AABB approved 3-day CS-PLTs without agitation and without bacterial testing for actively bleeding trauma patients. Our facility's goal is to carry CS-PLTs on air ambulances. RESULTS: CS-PLTs have been used for trauma patients at our facility since October 2015. As of August 2016, a total of 21 (19.1%) of 119 CS-PLTs have been transfused. The short 3-day storage period combined with the formation of clots in plasma-rich CS-PLTs during storage have been the major causes of a high (80.9%) discard rate. CONCLUSION: In the future, pathogen-reduced (PR), PLT additive solution (PAS) CS-PLTs seem more practical due to low risks of bacterial contamination and storage-related clotting. This should make longer storage of CS-PLTs feasible (e.g., 10 days or more). With a longer shelf life, PR PAS CS-PLTs could potentially be used in a wider range of patient populations.


Subject(s)
Blood Platelets , Cold Temperature , Platelet Transfusion/methods , Wounds and Injuries/therapy , Air Ambulances , Hemostasis , Humans , Platelet Transfusion/standards , Refrigeration , Time Factors , Validation Studies as Topic
4.
Clin Leadersh Manag Rev ; 18(6): 361-3, 2004.
Article in English | MEDLINE | ID: mdl-15597559

ABSTRACT

This article describes our journey for quality in the Department of Laboratory Medicine and Pathology (DLMP) at Mayo Clinic. It provides the background of the department and the process for the development and implementation of the quality program. In addition, a quality conference and the development of a quality school are outlined. Throughout the course of this process, valuable lessons were learned and are discussed. We are pleased with the success of the quality journey. However, we realize that the quest has just begun. We look forward to the future and the challenges that lie ahead.


Subject(s)
Ambulatory Care Facilities/standards , Laboratories/standards , Pathology, Clinical , Quality Assurance, Health Care/organization & administration , Organizational Case Studies , Organizational Objectives , Outcome Assessment, Health Care , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...