Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Adv Mater ; 36(24): e2313763, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38506567

ABSTRACT

Noncentrosymmetric triangular magnets offer a unique platform for realizing strong quantum fluctuations. However, designing these quantum materials remains an open challenge attributable to a knowledge gap in the tunability of competing exchange interactions at the atomic level. Here, a new noncentrosymmetric triangular S = 3/2 magnet CaMnTeO6 is created based on careful chemical and physical considerations. The model material displays competing magnetic interactions and features nonlinear optical responses with the capability of generating coherent photons. The incommensurate magnetic ground state of CaMnTeO6 with an unusually large spin rotation angle of 127°(1) indicates that the anisotropic interlayer exchange is strong and competing with the isotropic interlayer Heisenberg interaction. The moment of 1.39(1) µB, extracted from low-temperature heat capacity and neutron diffraction measurements, is only 46% of the expected value of the static moment 3 µB. This reduction indicates the presence of strong quantum fluctuations in the half-integer spin S = 3/2 CaMnTeO6 magnet, which is rare. By comparing the spin-polarized band structure, chemical bonding, and physical properties of AMnTeO6 (A = Ca, Sr, Pb), how quantum-chemical interpretation can illuminate insights into the fundamentals of magnetic exchange interactions, providing a powerful tool for modulating spin dynamics with atomically precise control is demonstrated.

2.
Inorg Chem ; 62(44): 18179-18188, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37863841

ABSTRACT

Transition-metal dichalcogenides (TMDs) have long been attractive to researchers for their diverse properties and high degree of tunability. Most recently, interest in magnetically intercalated TMDs has resurged due to their potential applications in spintronic devices. While certain compositions featuring the absence of inversion symmetry such as Fe1/3NbS2 and Cr1/3NbS2 have garnered the most attention, the diverse compositional space afforded through the host matrix composition as well as intercalant identity and concentration is large and remains relatively underexplored. Here, we report the magnetic ground state of Fe1/4NbS2 that was determined from low-temperature neutron powder diffraction as an A-type antiferromagnet. Despite the presence of overall inversion symmetry, the pristine compound manifests spin polarization induced by the antiferromagnetic order at generic k points, based on density functional theory band-structure calculations. Furthermore, by combining synchrotron diffraction, pair distribution function, and magnetic susceptibility measurements, we find that the magnetic properties of Fe1/4NbS2 are sensitive to the Fe site order, which can be tuned via electrochemical lithiation and thermal history.

3.
Neurol Genet ; 9(5): e200090, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37560121

ABSTRACT

Objectives: Transcript sequencing of patient-derived samples has been shown to improve the diagnostic yield for solving cases of suspected Mendelian conditions, yet the added benefit of full-length long-read transcript sequencing is largely unexplored. Methods: We applied short-read and full-length transcript sequencing and mitochondrial functional studies to a patient-derived fibroblast cell line from an individual with neuropathy that previously lacked a molecular diagnosis. Results: We identified an intronic homozygous MFN2 c.600-31T>G variant that disrupts the branch point critical for intron 6 splicing. Full-length long-read isoform complementary DNA (cDNA) sequencing after treatment with a nonsense-mediated mRNA decay (NMD) inhibitor revealed that this variant creates 5 distinct altered splicing transcripts. All 5 altered splicing transcripts have disrupted open reading frames and are subject to NMD. Furthermore, a patient-derived fibroblast line demonstrated abnormal lipid droplet formation, consistent with MFN2 dysfunction. Although correctly spliced full-length MFN2 transcripts are still produced, this branch point variant results in deficient MFN2 levels and autosomal recessive Charcot-Marie-Tooth disease, axonal, type 2A (CMT2A). Discussion: This case highlights the utility of full-length isoform sequencing for characterizing the molecular mechanism of undiagnosed rare diseases and expands our understanding of the genetic basis for CMT2A.

4.
bioRxiv ; 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36798371

ABSTRACT

Objectives: Transcript sequencing of patient derived samples has been shown to improve the diagnostic yield for solving cases of likely Mendelian disorders, yet the added benefit of full-length long-read transcript sequencing is largely unexplored. Methods: We applied short-read and full-length isoform cDNA sequencing and mitochondrial functional studies to a patient-derived fibroblast cell line from an individual with neuropathy that previously lacked a molecular diagnosis. Results: We identified an intronic homozygous MFN2 c.600-31T>G variant that disrupts a branch point critical for intron 6 spicing. Full-length long-read isoform cDNA sequencing after treatment with a nonsense-mediated mRNA decay (NMD) inhibitor revealed that this variant creates five distinct altered splicing transcripts. All five altered splicing transcripts have disrupted open reading frames and are subject to NMD. Furthermore, a patient-derived fibroblast line demonstrated abnormal lipid droplet formation, consistent with MFN2 dysfunction. Although correctly spliced full-length MFN2 transcripts are still produced, this branch point variant results in deficient MFN2 protein levels and autosomal recessive Charcot-Marie-Tooth disease, axonal, type 2A (CMT2A). Discussion: This case highlights the utility of full-length isoform sequencing for characterizing the molecular mechanism of undiagnosed rare diseases and expands our understanding of the genetic basis for CMT2A.

5.
Angew Chem Int Ed Engl ; 61(48): e202213499, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36194725

ABSTRACT

Bottom-up assembly of optically nonlinear and magnetically anisotropic lanthanide materials involving precisely placed spin carriers and optimized metal-ligand coordination offers a potential route to developing electronic architectures for coherent radiation generation and spin-based technologies, but the chemical design historically has been extremely hard to achieve. To address this, we developed a worthwhile avenue for creating new noncentrosymmetric chiral Ln3+ materials Ln2 (SeO3 )2 (SO4 )(H2 O)2 (Ln=Sm, Dy, Yb) by mixed-ligand design. The materials exhibit phase-matching nonlinear optical responses, elucidating the feasibility of the heteroanionic strategy. Ln2 (SeO3 )2 (SO4 )(H2 O)2 displays paramagnetic property with strong magnetic anisotropy facilitated by large spin-orbit coupling. This study demonstrates a new chemical pathway for creating previously unknown polar chiral magnets with multiple functionalities.

6.
ACS Org Inorg Au ; 2(6): 502-510, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36855531

ABSTRACT

The recent creation of 4f7 gadolinium materials has enabled vital studies of the free-ion properties of the Gd(III) cations. While the 8 S ground state in a trivalent Gd compound is, in principle, isotropic, it has been demonstrated that there is a residual orbital angular momentum affected by the crystal field and structural distortion in certain systems. By exploiting the atomistic control innate to material growth, we address a fundamental question of how the isotropic nature of Gd(III) is preserved in different dimensionalities of crystal structures. To achieve this, we designed two new trivalent Gd materials possessing two structurally distinct features, a 2-D CsGd(SO4)2 and a 3-D Cs[Gd(H2O)3(SO4)2]·H2O. The tunability of the structural dimension is facilitated by O-H---O hydrogen bonds. The structural divergence between the two compounds allows us to investigate each material individually and make a comparison between them regarding their physical properties as a function of lattice dimension. Our results demonstrate that structural dimensions have a negligible effect on the single-ion behavior of the materials. Magnetization measurements for the Gd(III) complexes yielded paramagnetic states with the isotropic spin-only nature. Specific heat data suggest that there is a lack of magnetic phase transition down to T = 1.8 K, and coupled lattice vibrations in the materials are attributable to strong covalent bonding characters of the (SO4)2- and H2O ligands. This work offers a pathway for retaining the single-ion property of Gd(III) while constructing the large spin magnetic moment S = 7/2 in large-scale extended frameworks.

7.
Curr Drug Deliv ; 19(5): 520-533, 2022.
Article in English | MEDLINE | ID: mdl-34420504

ABSTRACT

BACKGROUND: Hydrophilic Hydroxypropyl Methylcellulose (HPMC) matrix tablets are the standard role model of the oral controlled-release formulation. Nevertheless, the HPMC kinetics for the mechanistic understanding of drug release and hydrodynamic behaviors are rarely investigated. This study aims to investigate the release behaviors of both HPMC and paracetamol (model drug) from the hydrophilic matrix tablet. METHODS: Two different viscosity grades of HPMC were used (Low viscosity: 6 cps, High viscosity: 4,000 cps). Three different ratios of drug/HPMC (H:38.08%, M:22.85%, and L:15.23% (w/w) of HPMC amounts in total weight) matrix tablets were prepared by wet granulation technique. The release profiles of the drug and HPMC in a matrix tablet were quantitatively analyzed by HPLC and 1H-Nuclear Magnetic Resonance (NMR) spectroscopy. The hydrodynamic changes of HPMC were determined by the gravimetric behaviors such as swelling and erosion rates, gel layer thickness, front movement data,and distributive Near-Infrared (NIR) chemical imaging of HPMC in a matrix tablet during the dissolution process. RESULTS: High viscosity HPMC tablets showed slower release of HPMC than the release rate of drug, suggesting that drug release preceded polymer release.Different hydration phenomenon was qualitatively identified and corresponded to the release profiles. The release behaviors of HPMC and drug in the tablet could be distinguished with the significant difference with fitted dissolution kinetics model (Low viscosity HPMC 6cps; Korsmeyer-Peppas model, High viscosity HPMC 4000cps; Hopfenberg model, Paracetamol; Weibull model) according to the weight of ingredients and types of HPMC. CONCLUSION: The determination of HPMC polymer release correlating with drug release, hydrodynamic behavior, and NIR chemical imaging of HPMC can provide new insights into the drug release- modulating mechanism in the hydrophilic matrix system.


Subject(s)
Acetaminophen , Hydrodynamics , Delayed-Action Preparations/chemistry , Drug Liberation , Hypromellose Derivatives/chemistry , Kinetics , Methylcellulose/chemistry , Polymers , Solubility , Tablets , Viscosity
8.
Molecules ; 26(23)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34885793

ABSTRACT

Polar magnetic materials exhibiting appreciable asymmetric exchange interactions can potentially host new topological states of matter such as vortex-like spin textures; however, realizations have been mostly limited to half-integer spins due to rare numbers of integer spin systems with broken spatial inversion lattice symmetries. Here, we studied the structure and magnetic properties of the S = 1 integer spin polar magnet ß-Ni(IO3)2 (Ni2+, d8, 3F). We synthesized single crystals and bulk polycrystalline samples of ß-Ni(IO3)2 by combining low-temperature chemistry techniques and thermal analysis and characterized its crystal structure and physical properties. Single crystal X-ray and powder X-ray diffraction measurements demonstrated that ß-Ni(IO3)2 crystallizes in the noncentrosymmetric polar monoclinic structure with space group P21. The combination of the macroscopic electric polarization driven by the coalignment of the (IO3)- trigonal pyramids along the b axis and the S = 1 state of the Ni2+ cation was chosen to investigate integer spin and lattice dynamics in magnetism. The effective magnetic moment of Ni2+ was extracted from magnetization measurements to be 3.2(1) µB, confirming the S = 1 integer spin state of Ni2+ with some orbital contribution. ß-Ni(IO3)2 undergoes a magnetic ordering at T = 3 K at a low magnetic field, µ0H = 0.1 T; the phase transition, nevertheless, is suppressed at a higher field, µ0H = 3 T. An anomaly resembling a phase transition is observed at T ≈ 2.7 K in the Cp/T vs. T plot, which is the approximate temperature of the magnetic phase transition of the material, indicating that the transition is magnetically driven. This work offers a useful route for exploring integer spin noncentrosymmetric materials, broadening the phase space of polar magnet candidates, which can harbor new topological spin physics.

9.
Inorg Chem ; 60(21): 16544-16557, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34637293

ABSTRACT

Magnetic polar materials feature an astonishing range of physical properties, such as magnetoelectric coupling, chiral spin textures, and related new spin topology physics. This is primarily attributable to their lack of space inversion symmetry in conjunction with unpaired electrons, potentially facilitating an asymmetric Dzyaloshinskii-Moriya (DM) exchange interaction supported by spin-orbital and electron-lattice coupling. However, engineering the appropriate ensemble of coupled degrees of freedom necessary for enhanced DM exchange has remained elusive for polar magnets. Here, we study how spin and orbital components influence the capability of promoting the magnetic interaction by studying two magnetic polar materials, α-Cu(IO3)2 (2D) and Mn(IO3)2 (6S), and connecting their electronic and magnetic properties with their structures. The chemically controlled low-temperature synthesis of these complexes resulted in pure polycrystalline samples, providing a viable pathway to prepare bulk forms of transition-metal iodates. Rietveld refinements of the powder synchrotron X-ray diffraction data reveal that these materials exhibit different crystal structures but crystallize in the same polar and chiral P21 space group, giving rise to an electric polarization along the b-axis direction. The presence and absence of an evident phase transition to a possible topologically distinct state observed in α-Cu(IO3)2 and Mn(IO3)2, respectively, imply the important role of spin-orbit coupling. Neutron diffraction experiments reveal helpful insights into the magnetic ground state of these materials. While the long-wavelength incommensurability of α-Cu(IO3)2 is in harmony with sizable asymmetric DM interaction and low dimensionality of the electronic structure, the commensurate stripe AFM ground state of Mn(IO3)2 is attributed to negligible DM exchange and isotropic orbital overlapping. The work demonstrates connections between combined spin and orbital effects, magnetic coupling dimensionality, and DM exchange, providing a worthwhile approach for tuning asymmetric interaction, which promotes evolution of topologically distinct spin phases.

10.
ACS Cent Sci ; 7(8): 1381-1390, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34471681

ABSTRACT

Chemical bonding in 2D layered materials and van der Waals solids is central to understanding and harnessing their unique electronic, magnetic, optical, thermal, and superconducting properties. Here, we report the discovery of spontaneous, bidirectional, bilayer twisting (twist angle ∼4.5°) in the metallic kagomé MgCo6Ge6 at T = 100(2) K via X-ray diffraction measurements, enabled by the preparation of single crystals by the Laser Bridgman method. Despite the appearance of static twisting on cooling from T ∼300 to 100 K, no evidence for a phase transition was found in physical property measurements. Combined with the presence of an Einstein phonon mode contribution in the specific heat, this implies that the twisting exists at all temperatures but is thermally fluctuating at room temperature. Crystal Orbital Hamilton Population analysis demonstrates that the cooperative twisting between layers stabilizes the Co-kagomé network when coupled to strongly bonded and rigid (Ge2) dimers that connect adjacent layers. Further modeling of the displacive disorder in the crystal structure shows the presence of a second, Mg-deficient, stacking sequence. This alternative stacking sequence also exhibits interlayer twisting, but with a different pattern, consistent with the change in electron count due to the removal of Mg. Magnetization, resistivity, and low-temperature specific heat measurements are all consistent with a Pauli paramagnetic, strongly correlated metal. Our results provide crucial insight into how chemical concepts lead to interesting electronic structures and behaviors in layered materials.

11.
Curr Drug Metab ; 22(9): 726-734, 2021.
Article in English | MEDLINE | ID: mdl-34151758

ABSTRACT

Clays have been used in various health care products, including drug delivery systems. Advanced formulations have been investigated to take full advantage of clays or clay-based materials. The remarkable properties of clays, such as high adsorption, high surface area and high ion exchange capacities, provide an ideal system for the delivery of poorly water-soluble drugs. Currently, there is still limited information on the classification and discussion of clay-based formulations for poorly water-soluble drugs. This review aims to describe efficient delivery systems that use clay as the main excipient in formulations. More details regarding the strategies of using clays in formulations as well as fabrication methods will be discussed. Moreover, combinations with other excipients in hybrid formulations will also be mentioned and the efficacy of these systems will be evaluated. The recent studies on claybased formulations for poorly water-soluble drugs provide fundamental approaches and prospects to be applied in drug development.


Subject(s)
Biological Availability , Clay/chemistry , Drug Compounding/methods , Pharmaceutical Preparations/chemistry , Solubility , Drug Delivery Systems , Drug Development/methods , Humans , Pharmacokinetics
12.
Int J Pharm ; 604: 120672, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33961955

ABSTRACT

In this study, volatile perfume was encapsulated in microcapsules (MCs) via interpolyelectrolyte complexes (IPECs) of oppositely charged polymers, with high encapsulation efficiency, to be delivered in a sustained manner. Positively charged chitosan (CTS) and negatively charged Eudragit® S100 (ES100) were used as eco-friendly biopolymers. Limonene (LMN) was selected as the model perfume. First, the solution of LMN in ethyl acetate and poloxamer 407 (POX407) in acidic solution was emulsified using ultrasonication. CTS and ES100 were added in that particular order to form o/w emulsion. LMN-loaded microcapsules (LMN-MCs) were prepared by adjusting the pH and freeze-drying for solidification. The electrostatic interactions of CTS and ES100 to form IPECs were highly dependent on pH, changing in the microscopic images of emulsion droplets and zeta potential. The NH3+ group of CTS and the COO- group of ES100 caused the electrostatic interactions at a specific pH. The formation mechanism of LMN-MCs was successfully validated using instrumental analysis, charge density, and energy dispersive X-ray spectrometer (EDS) mapping. Encapsulation efficiency, loading content, and release rates of LMN-MCs varied according to the ratios of CTS and ES100, demonstrating optimal performance at a 1:1 ratio. The current LMN-MCs could provide a simple manufacturing process with high performance in terms of encapsulation efficiency (>94%), drug loading, yield and sustained release of volatile perfume for 120 h.


Subject(s)
Perfume , Polymers , Capsules , Delayed-Action Preparations , Hydrogen-Ion Concentration
13.
Int J Nanomedicine ; 16: 2819-2831, 2021.
Article in English | MEDLINE | ID: mdl-33888982

ABSTRACT

PURPOSE: To investigate the effects of solvents on the formation of self-assembled nanonization of albumin-oleic acid conjugates (AOCs) using a solvent exchange mechanism for the construction of in situ forming implants (ISFI). METHODS: A poorly water-soluble drug, paliperidone palmitate (PPP), was chosen as the model drug. AOC was synthesized with the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) reaction. Dichloromethane, tetrahydrofuran, ethanol, N-methyl-2-pyrrolidone, dimethyl sulfoxide, and deionized water were selected to investigate the formation of self-assembled AOC nanoparticles (AONs). The volume ratios of organic solvents against water could determine the miscibility, injectability, and in situ nanonizing capability without aggregation. RESULTS: As the polarity of the organic solvents increased, the AONs exhibited a spherical shape, and the larger the volume of the solvent, the smaller the size of the AONs. To use AOC in ISFI for controlled release of PPP, poly(d,l-lactide-co-glycolide) (PLGA) was combined with the AOC in 2 mL of N-methyl-2-pyrrolidone and water solution (1.8/0.2 ratio). The release rates of all formulations exhibited similar curve patterns overall but were more controlled in decreasing order as follows: AOC, PLGA, and AOC/PLGA for 14 days. CONCLUSION: A combined formulation of AOC and PLGA was found to effectively control the initial burst release of the drug.


Subject(s)
Nanoparticles/chemistry , Paliperidone Palmitate/pharmacokinetics , Solvents/chemistry , Albumins/chemistry , Delayed-Action Preparations , Dimethyl Sulfoxide/chemistry , Drug Implants/pharmacokinetics , Ethanol/chemistry , Oleic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Pyrrolidinones , Solubility , Spectroscopy, Fourier Transform Infrared , Water
14.
Eur J Pharm Biopharm ; 164: 13-19, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33887388

ABSTRACT

Industrial-scale pharmaceutical applications still face many challenges in overcoming the low absorption and bioavailability of poorly water-soluble drugs. Hot-melt extrusion has emerged as a promising approach with continuous processing on an industrial scale for the preparation of drug delivery systems. Many reviews have mentioned the potential applications, processes, principles and advantages and disadvantages of hot-melt extrusion in the pharmaceutical industry. However, a focus on the recent progress of hot-melt extrusion, which investigates the impacts of processes and formulations of solid dispersions of poorly water-soluble drugs, is missing. In this review, various factors, including polymers, drug properties, additives and surfactants, in solid dispersion SD formulations by hot-melt extrusion will be discussed. Moreover, the effects of the hot-melt extrusion process on the physicochemical properties of solid dispersions will be mentioned. The utilization of molecular interactions in hot-melt extrusion to improve drug stability will also be described. Overall, this summary of recent studies on solid dispersion by hot-melt extrusion will provide perspectives and effectiveness for the development of formulations containing poorly water-soluble drugs.


Subject(s)
Chemistry, Pharmaceutical/methods , Drug Compounding/methods , Pharmaceutical Preparations/chemistry , Biological Availability , Drug Delivery Systems/methods , Drug Industry/methods , Hot Temperature , Polymers/chemistry , Solubility
15.
Curr Med Chem ; 28(42): 8711-8721, 2021.
Article in English | MEDLINE | ID: mdl-33881970

ABSTRACT

Lipid-based formulations have recently been investigated as a promising approach to enhance the bioavailability of drugs, especially poorly water-soluble drugs. The encapsulation of lipid-based formulations in porous materials can result in a transformation of liquids or semisolid forms to solid dosage forms. Moreover, the specific structure of porous carriers could offer an enhanced ability to load and control active pharmaceutical ingredients. Although there have been prominent reports on lipid-based formulations and porous materials as promising technologies for controlled drug release, the overall methods of encapsulating lipid-based formulations need to be discussed for further formulation investigations. This review aims to present the key strategies used for producing porous carriers containing lipid-based formulations. We also discuss methods that enhance the encapsulation efficiency of loaded drugs within porous structures (instead of lipid-based formulations). Moreover, the critical factors that affect tablet formation are outlined. This overview of lipid-based formulations encapsulated within porous materials provides a summary of the technical methods used in the development of these formulations and their clinical translation.


Subject(s)
Drug Carriers , Drug Delivery Systems , Drug Liberation , Humans , Lipids , Porosity , Solubility
16.
Int J Pharm ; 598: 120371, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33581274

ABSTRACT

Fucoidan is well known to have various biological functions and is often investigated for pharmaceutical applications. Several studies have been conducted on clinical applications of fucoidan in recent years, especially regarding its oral drug delivery. Although fucoidan has shown promising results in various dosage forms, its potential applications as a dietary supplement have been demonstrated, and recent studies show that oral administration of fucoidan is preferred. However, the focus on the oral delivery of fucoidan in recent studies has caused its potency in therapy to be understudied. This review aims to provide results on the promising fucoidan activity by oral administration with in vivo studies. In addition to using it as an active ingredient, the utilization of fucoidan as an excipient in oral drug delivery systems will be discussed. An overview of fucoidan administration by oral delivery in recent promising studies will provide a direction for further investigations in clinical applications, particularly for fucoidan, which has a broad spectrum of bioactive properties.


Subject(s)
Drug Delivery Systems , Polysaccharides , Administration, Oral , Excipients
17.
Int J Pharm ; 597: 120373, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33577912

ABSTRACT

The freeze-drying process has been particularly attractive for preparing tablets for controlled drug release. Although traditional methods, such as granulation or direct compression methods, have been used in various studies to produce tablets with controlled release, freeze-drying processes have been utilized in certain circumstances due to their distinct advantages. However, overall, further development of these strategies, which started with early studies on orally disintegrating tablets, is still necessary. In this review, the incorporation of different formulations into freeze-dried tablets will be discussed. Moreover, the use of excipients, freeze-drying conditions, formulation reconstitution and tablet structure for optimizing the performance of freeze-dried tablets will be reported, including strategies with nanoformulations and natural materials. Generally, this discussion with potential approaches will benefit further development of freeze-dried tablets containing drugs in the pharmaceutical industry.


Subject(s)
Drug Delivery Systems , Excipients , Freeze Drying , Solubility , Tablets
18.
Anticancer Agents Med Chem ; 21(15): 2082-2088, 2021.
Article in English | MEDLINE | ID: mdl-33390123

ABSTRACT

BACKGROUND: This study aimed to evaluate the effects of hydrophobic and hydrophilic Film-Forming Gels (FFGs) on the controlled delivery of drugs with different levels of hydrophobicity. METHODS: This evaluation was carried out by employing zein and polyvinylpyrrolidone as hydrophobic and hydrophilic film-forming agents, respectively, in combination with hydroxypropyl methylcellulose functionalized as a hydrogel basement at a ratio that had been optimized to achieve the fastest drying time. Free curcumin or terbinafine hydrochloride was subsequently dispersed into blank FFGs to produce the final FFG formulations. RESULTS: Although the extreme hydrophobicity of curcumin strongly limited its topical permeability compared to that of terbinafine hydrochloride, zein FFGs clearly resulted in a favourable sustained release system for highly hydrophobic drugs, such as curcumin. Moreover, polyvinylpyrrolidone would be highly effective for the sustained release of a less hydrophobic drug, such as terbinafine hydrochloride. Analyses of the wettability, surface morphology, chemical interactions and crystallinity of FFGs also helped to elucidate the mechanisms of their drug release profiles. CONCLUSION: This fundamental finding is beneficial for further design studies on FFGs as sustained drug delivery systems for topical drugs with a wide range of hydrophobicities.


Subject(s)
Antineoplastic Agents/chemistry , Curcumin/chemistry , Drug Delivery Systems , Povidone/chemistry , Zein/chemistry , Drug Carriers/chemistry , Gels/chemistry , Humans , Hydrophobic and Hydrophilic Interactions
19.
Biomolecules ; 11(1)2021 01 14.
Article in English | MEDLINE | ID: mdl-33466731

ABSTRACT

Blueberries are consumed as healthy fruits that provide a variety of benefits to the nervous system. Scientists have found that blueberries can be used as a daily edible source for supplementation to prevent and minimize complexities of age-related diseases as well as to improve learning and memory in children. Anthocyanins are the most mentioned compounds among the components in blueberries, as they play a major role in providing the health benefits of this fruit. However, while they are highly active in impeding biological impairment in neuronal functions, they have poor bioavailability. This review focuses on neurological investigations of blueberries from in vitro cell studies to in vivo studies, including animal and human studies, with respect to their positive outcomes of neuroprotection and intervention in neurodegenerative conditions. Readers will also find information on the bioavailability of anthocyanins and the considerable factors affecting them so that they can make informed decisions regarding the daily consumption of blueberries. In this context, the ways in which blueberries or blueberry supplementation forms are consumed and which of these forms is best for maximizing the health benefits of blueberries should be considered important decision-making factors in the consumption of blueberries; all of these aspects are covered in this review. Finally, we discuss recent technologies that have been employed to improve the bioavailability of blueberry anthocyanins in the development of effective delivery vehicles supporting brain health.


Subject(s)
Anthocyanins/pharmacology , Blueberry Plants/chemistry , Dietary Supplements , Neurons/physiology , Neuroprotection , Animals , Biological Availability , Clinical Trials as Topic , Humans , Neurons/drug effects , Neuroprotection/drug effects
20.
Curr Med Chem ; 28(10): 1957-1969, 2021.
Article in English | MEDLINE | ID: mdl-32496984

ABSTRACT

Colon-targeted oral delivery has recently attracted a substantial number of studies on both systemic and local treatments. Among approaches for colonic delivery, film coatings have been demonstrated as effective elements of the drug delivery systems because they can integrate multiple release strategies, such as pH-controlled release, time-controlled release and enzyme-triggered release. Moreover, coating layer modulations, natural film materials and nanoparticle coatings have been vigorously investigated with promising applications. This review aims to describe the primary approaches for improving drug delivery to the colon in the last decade. The outstanding importance of current developments in film coatings will advance dosage form designs and lead to the development of efficient colon-targeted oral delivery systems.


Subject(s)
Colon , Drug Delivery Systems , Humans
SELECTION OF CITATIONS
SEARCH DETAIL