Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
BMC Oral Health ; 24(1): 230, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38350906

ABSTRACT

BACKGROUND: The present study aimed to evaluate the effectiveness of using platelet-rich fibrin (PRF) as the apical matrix for the placement of MTA in nonsurgical endodontic therapy for teeth with periapical lesions and open apices. METHODS: Twelve teeth from eleven patients with periapical periodontitis and open apices were enrolled in the study. Nonsurgical endodontic therapy was performed with the PRF used as an apical barrier and the MTA manipulated as an apical plug for further thermoplasticized gutta percha in the remaining part of the root canal. Clinical signs and periapical digital radiographs were recorded and analyzed to evaluate the curing progress after periodical follow-ups of 1, 3, and 6 months. The horizontal dimension of the periapical lesion was determined, and the changes in the dimensions were recorded each time. The Friedman test was used for statistical analysis, with P < .05 serving as the threshold for determining statistical significance. RESULTS: All patients had no clinical symptoms after the first month of treatment, with a significant reduction in the periapical lesion after periodical appointments. CONCLUSIONS: PRF is an effective barrier when combined with MTA for the treatment of teeth with periapical periodontitis and open apices.


Subject(s)
Periapical Periodontitis , Platelet-Rich Fibrin , Root Canal Filling Materials , Humans , Calcium Compounds/therapeutic use , Root Canal Filling Materials/therapeutic use , Gutta-Percha/therapeutic use , Periapical Periodontitis/therapy , Periapical Periodontitis/pathology , Drug Combinations , Tooth Apex/diagnostic imaging , Tooth Apex/pathology , Oxides/therapeutic use , Silicates/therapeutic use
3.
RSC Adv ; 13(15): 10005-10014, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37006365

ABSTRACT

In this work, a gelatin/carboxymethyl cellulose (CMC) base formulation was first modified by using different hydrocolloids like oxidized starch (1404), hydroxypropyl starch (1440), locust bean gum, xanthan gum, and guar gum. The properties of modified films were characterized using SEM, FT-IR, XRD and TGA-DSC before selecting of best-modified film for further development with shallot waste powder. SEM images showed that the rough or heterogeneous surface of the base was changed to more even and smooth depending on the hydrocolloids used while FTIR results demonstrated that a new NCO functional group non-existent in the base formulation was found for most of the modified films, implying that the modification led to the formation of this functional group. Compared to other hydrocolloids, the addition of guar gum into the gelatin/CMC base has improved its properties such as better color appearance, higher stability, and less weight loss during thermal degradation, and had minimal effect on the structure of resulting films. Subsequently, the incorporation of spray-dried shallot peel powder into gelatin/CMC/guar gum was conducted to investigate the applicability of edible films in the preservation of raw beef. Antibacterial activity assays revealed that the films can inhibit and kill both Gram-positive and Gram-negative bacteria as well as fungi. It is noteworthy that the addition of 0.5% shallot powder not only effectively decelerated the microbial growth but also destroyed E. coli during 11 days of storage (2.8 log CFU g-1) and the bacterial count was even lower than that of uncoated raw beef on day 0 (3.3 log CFU g-1).

4.
Biotechnol Prog ; 39(4): e3344, 2023.
Article in English | MEDLINE | ID: mdl-37025043

ABSTRACT

Bacterial cellulose (BC) is a biopolymer with applications in numerous industries such as food and pharmaceutical sectors. In this study, various hydrocolloids including modified starches (oxidized starch-1404 and hydroxypropyl starch-1440), locust bean gum, xanthan gum (XG), guar gum, and carboxymethyl cellulose were added to the Hestrin-Schramm medium to improve the production performance and microstructure of BC by Gluconacetobacter entanii isolated from coconut water. After 14-day fermentation, medium supplemented with 0.1% carboxymethyl cellulose and 0.1% XG resulted in the highest BC yield with dry BC content of 9.82 and 6.06 g/L, respectively. In addition, scanning electron microscopy showed that all modified films have the characteristic three-dimensional network of cellulose nanofibers with dense structure and low porosity as well as larger fiber size compared to control. X-ray diffraction indicated that BC fortified with carboxymethyl cellulose exhibited lower crystallinity while Fourier infrared spectroscopy showed characteristic peaks of both control and modified BC films.


Subject(s)
Gluconacetobacter xylinus , Gluconacetobacter xylinus/chemistry , Carboxymethylcellulose Sodium , Cellulose/chemistry , Carbohydrates , Starch
5.
Waste Manag ; 105: 492-500, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-32143145

ABSTRACT

Sequential potassium hydroxide (KOH)-phosphoric acid (H3PO4) activation was applied to biomass waste to fabricate activated carbon microspheres (mCMs) with a controllable porous structure. Carbon microspheres (CMs) were first synthesized from xylose using a bottom-up approach of hydrothermal carbonization. Sequential KOH and H3PO4 activation was applied to the CMs in a KOH-carbon solid reaction. This created pores, which were further enlarged by adsorption of H3PO4. The KOH:carbon (C) and H3PO4:C molar ratios, and the H3PO4 heating rate and activation time, were varied to investigate the effect on average pore size and pore distribution. A uniform porous structure was formed without destruction of the spherical shape, and an almost 700-fold increase in surface area was obtained over the non-activated CMs. Following activation with H3PO4, phosphorous groups were found to be present at the surface of the carbon microspheres. The mCM was tested as a supercapacitor electrode and was shown to have a maximum specific capacitance of up to 277F g-1. A Ragone plot showed the maximum power density to be 173.88 W Kg-1. This increased specific capacitance was attributed to the increase in surface area and the presence of phosphorous-containing acid sites on the material surface.


Subject(s)
Xylose , Biomass , Electric Capacitance , Microspheres , Porosity
6.
Adv Wound Care (New Rochelle) ; 8(10): 476-486, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31456905

ABSTRACT

Objective: Cell migration is an essential process in skin wound healing. Photodynamic therapy (PDT) enhances wound healing by photoactivating a photosensitizer with a specific wavelength of light. Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel expressed in multiple layers of keratinocytes. Recent studies showed that the activation of CFTR-related downstream signaling affects skin wound healing. We examined whether indocyanine green (ICG)-mediated PDT-enhanced cell migration is related to CFTR activation. Approach: The spatial and temporal expression levels of CFTR and proteins involved in focal adhesion, including focal adhesion kinase (FAK) and paxillin, were evaluated during cell migration in vitro and in vivo for wound healing. Results: ICG-PDT-conditioned medium collected from cells exposed to 5 J/cm2 near-infrared light in the presence of 100 µg/mL ICG activated CFTR and enhanced HaCaT cell migration. The expression of phosphorylated FAK Tyr861 and phosphorylated paxillin in focal adhesions was spatially and temporally regulated in parallel by ICG-PDT-conditioned medium. Curcumin, a nonspecific activator of CFTR, further increased PDT-enhanced cell migration, whereas inhibition of CFTR and FAK delayed cell migration. The involvement of CFTR in ICG-PDT-enhanced skin wound healing was confirmed in a mouse back skin wound model. Innovation: CFTR is a potential new therapeutic target in ICG-PDT to enhance wound healing. Conclusion: ICG-PDT-enhanced cell migration may be related to activation of the CFTR and FAK pathway. Conditioned medium collected from ICG-PDT may be useful for treating patients with chronic skin ulcer by regulating CFTR expression in keratinocytes.

7.
Waste Manag ; 52: 367-74, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27053375

ABSTRACT

The application of an environmentally benign sulfonated carbon microsphere catalyst for biodiesel production from waste cooking oil was investigated. This catalyst was prepared by the sequential hydrothermal carbonization and sulfonation of xylose. The morphology, surface area, and acid properties were analyzed. The surface area and acidity of the catalyst were 86m(2)/g and 1.38mmol/g, respectively. In addition, the presence of sulfonic acid on the carbon surface was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The catalytic activity was tested for biodiesel production from waste cooking oil via a two-step reaction to overcome reaction equilibrium. The highest biodiesel yield (89.6%) was obtained at a reaction temperature of 110°C, duration time of 4h, and catalyst loading of 10wt% under elevated pressure 2.3bar and 1.4bar for first and second step, respectively. The reusability of the catalyst was investigated and showed that the biodiesel yield decreased by 9% with each cycle; however, this catalyst is still of interest because it is an example of green chemistry, is nontoxic, and makes use of xylose waste.


Subject(s)
Biofuels , Cooking , Green Chemistry Technology/methods , Plant Oils/chemistry , Recycling/methods , Waste Products , Photoelectron Spectroscopy , Spectroscopy, Fourier Transform Infrared , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...