Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 349: 140797, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38016526

ABSTRACT

Arsenic (As) turnover in rice paddy agro-ecosystems has received much attention because As can enter the food chain through its accumulation in rice, thereby affecting human health. Returning straw to soil is a common practice to retain nutrients for soil and crops, but it also cycles As within the rice paddy field ecosystems. However, there is still a lack of detailed understanding of the fate of As in rice straw, and how or to what extent it is recycled back into the soil environment. This study aims to elucidate the relationship between the microstructure of rice straw and the release of As during rice straw decomposition. The microstructure of rice straw was found to comprise both organic and silica (phytolith) components. These two constituents are inter-embedded to form a composite-like structure that contains up to 6.48 mg As Kg-1. The 30-day batch experiments revealed that the biochemical release of As simultaneously depends upon the decomposition of the organic component and the desilicification of the silica component. Accompanying the release of As was the release of other elements such as Fe, Al, P and S. These elements can further interact with As to form less mobile compounds. The introduction of either Trichoderma harzianum or Bacillus velezensis was expected to accelerate the decomposition of rice straw, and enhance the silica dissolution, hence contributing to an increase in the As release. Despite these expectations, our observations showed the opposite effects. Microorganisms presumably have facilitated the change in solution chemistry or the inclusion of As into the newly-formed precipitates. The biochemical decomposition process can reduce straw particle size, while the negatively-charge surface will involve microsized straw particles in the electrostatic interaction, thereby favoring the dispersibility state. Therefore, the co-transport of micro-sized straw particles with As under field conditions should not be neglected.


Subject(s)
Arsenic , Oryza , Humans , Oryza/chemistry , Ecosystem , Soil/chemistry , Silicon Dioxide
2.
Sci Total Environ ; 893: 164891, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37327908

ABSTRACT

The mobilization of arsenic (As) in paddy soil has received much attention because it might accelerate the transfer of As from soil to rice. This study aims to elucidate whether earthworms can mobilize As through their casts. Cast samples were collected from 23 different paddy fields in the Red River delta. We first analysed different forms of As through fractionation and then performed batch experiments under reducing conditions to identify factors that govern the mobility of As in casts. Because the dissociation of casts may induce colloids that carry As, the colloidal properties of cast suspensions were also examined. The median value of As in casts (obtained from aqua regia digestion) was 5.11 mg kg-1, which was lower than that in the surrounding soil (6.7 mg kg-1). Compared with the surrounding soil, casts contain less As, possibly because cast As is more labile and more easily lost due to leaching. Various processes, including the reductive dissolution of Fe oxides, decomposition of organic matter, and sorption competition of soluble anionic substances, such as P, Si and DOC, were found to strongly correlate with the release of As from casts. We propose that earthworms, via their casts, may accelerate the As cycle in paddy soils, potentially intensifying As exposure to human health. The dissociation of cast could release colloids containing As; therefore, the cotransport of As with cast-induced colloids should also be considered in future works.


Subject(s)
Arsenic , Oligochaeta , Oryza , Soil Pollutants , Animals , Humans , Arsenic/analysis , Oligochaeta/metabolism , Soil , Soil Pollutants/analysis , Oxides , Oryza/metabolism
3.
Environ Pollut ; 288: 117703, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34237650

ABSTRACT

Fungicide application for controlling fungal diseases can increase copper (Cu) accumulation in soil. More urgently, Cu released from fungicides can associate with soil clay and favour the mutual aggregation of Cu and soil clay, thereby potentially intensifying the accumulation of Cu. We investigated the effects of Cu salt and six common Cu-based fungicides on colloidal dynamics of a clay fraction from citrus cultivated soil. Batch experiments were carried out to provide the loading capacity of the clay fraction for Cu. The colloidal dynamic experiments were performed over a pH range from 3 to 8 following a test tube method, while surface charge, the key electrochemical factor of the solid-liquid interface, was quantified by a particle charge detector. It was found that all the studied fungicides, via releasing Cu2+, acted to effectively favour clay aggregation. The dissolved organic matter obtained from the dissolution of polymers in fungicides can theoretically stimulate clay dispersion. However, their effects were obscured due to the overwhelming effect of Cu2+. Therefore, Cu2+ appears as the most active agent in the fungicides that intensifies clay aggregation. These findings imply that the intensive application of fungicides for plant protection purposes can inadvertently reduce clay mobility, favour the co-aggregation of clay and fungicides, and hence potentially exacerbate the contamination of the citrus soil.


Subject(s)
Citrus , Fungicides, Industrial , Soil Pollutants , Clay , Copper/analysis , Fungicides, Industrial/analysis , Soil , Soil Pollutants/analysis
4.
J Environ Manage ; 249: 109423, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31450201

ABSTRACT

The formation of phytoliths as a result of the precipitation of Si in many Si-rich plant species is known to encapsulate organic matter. This work aims to examine the possible encapsulation of Cu in grass phytoliths in an orange growing area, where Cu-rich fungicides have been excessively applied. Batch experiments, in combination with SEM-EDS and microscopy, were conducted for the grass-derived phytoliths and phytoliths separated from soil, thus revealing their dissolution properties, morphotypes and contents, in relation to soil properties. By measuring the Cu release accompanying the dissolution of phytoliths by different extractants, especially an Na2CO3/HNO3 solution, it was revealed that Cu was encapsulated within the silica body of the phytolith. This sink of Cu in the grass can be cycled to serve as a new Cu source in soils. Phytolith contents in the soil were up to 17.7 g kg-1 and tended to accumulate in soil depths from 0 to 20 cm. A positive correlation was found for soil phytolith and phytCu contents and may be indicative of the role of phytoliths as an enhancer of Cu accumulation in soil. It would be worth developing suitable techniques for the determination of phytCu, because common extraction/digestion methods are not suited for evaluating this Cu pool.


Subject(s)
Soil Pollutants , Soil , Copper , Plants , Poaceae , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...