Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(17): 25524-25537, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38472585

ABSTRACT

Biodiesel is a highly promising and viable alternative to fossil-based diesel that also addresses the urgent need for effective waste management. It can be synthesized by the chemical modification of triglycerides sourced from vegetable origin, animal fat, or algal oil. The transesterification reaction is the preferred method of producing biodiesel. However, the non-miscibility of alcohol and oil layer causes excessive utilization of alcohol, catalyst, and a substantial reacting time and temperature. In the current investigation, transesterification of waste fish oil was performed with petro-diesel as cosolvent, under the influence of ultrasound energy. The combination of both techniques is a unique and efficient way to minimize the mass transfer limitations considerably and hence reduces the parameters of the reaction. It is also a sincere effort to comply with the principles of green chemistry. The optimum reaction conditions were obtained using response surface methodology (RSM) that were as follows: molar ratio of methanol to oil 9.09:1, catalyst concentration of 0.97 wt%, cosolvent concentration of 29.1 wt%, temperature 60.1℃, and a reacting time 30 min. Under these listed conditions, 98.1% biodiesel was achievable, which was in close agreement with the expected result. In addition, the cosolvent removal step from the crude biodiesel was also eliminated as it could be employed as a blended fuel in CI engines.


Subject(s)
Biofuels , Plant Oils , Animals , Esterification , Methanol , Catalysis
2.
Front Microbiol ; 14: 1036386, 2023.
Article in English | MEDLINE | ID: mdl-36876086

ABSTRACT

Bordetella pertussis is the bacterial causative agent of whooping cough, a serious respiratory illness. An extensive knowledge on its virulence regulation and metabolism is a key factor to ensure pertussis vaccine manufacturing process robustness. The aim of this study was to refine our comprehension of B. pertussis physiology during in vitro cultures in bioreactors. A longitudinal multi-omics analysis was carried out over 26 h small-scale cultures of B. pertussis. Cultures were performed in batch mode and under culture conditions intending to mimic industrial processes. Putative cysteine and proline starvations were, respectively, observed at the beginning of the exponential phase (from 4 to 8 h) and during the exponential phase (18 h 45 min). As revealed by multi-omics analyses, the proline starvation induced major molecular changes, including a transient metabolism with internal stock consumption. In the meantime, growth and specific total PT, PRN, and Fim2 antigen productions were negatively affected. Interestingly, the master virulence-regulating two-component system of B. pertussis (BvgASR) was not evidenced as the sole virulence regulator in this in vitro growth condition. Indeed, novel intermediate regulators were identified as putatively involved in the expression of some virulence-activated genes (vags). Such longitudinal multi-omics analysis applied to B. pertussis culture process emerges as a powerful tool for characterization and incremental optimization of vaccine antigen production.

SELECTION OF CITATIONS
SEARCH DETAIL