Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 59(9): 4352-63, 2016 05 12.
Article in English | MEDLINE | ID: mdl-26950250

ABSTRACT

Inhibition of inducible T-cell kinase (ITK), a nonreceptor tyrosine kinase, may represent a novel treatment for allergic asthma. In our previous reports, we described the discovery of sulfonylpyridine (SAP), benzothiazole (BZT), indazole (IND), and tetrahydroindazole (THI) series as novel ITK inhibitors and how computational tools such as dihedral scans and docking were used to support this process. X-ray crystallography and modeling were applied to provide essential insight into ITK-ligand interactions. However, "visual inspection" traditionally used for the rationalization of protein-ligand affinity cannot always explain the full complexity of the molecular interactions. The fragment molecular orbital (FMO) quantum-mechanical (QM) method provides a complete list of the interactions formed between the ligand and protein that are often omitted from traditional structure-based descriptions. FMO methodology was successfully used as part of a rational structure-based drug design effort to improve the ITK potency of high-throughput screening hits, ultimately delivering ligands with potency in the subnanomolar range.


Subject(s)
Interleukin-2/physiology , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Benzothiazoles/chemistry , Crystallography, X-Ray , Drug Design , Enzyme Induction , Indazoles/chemistry , Models, Molecular , Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/biosynthesis , Pyridines/chemistry , Quantum Theory
2.
Bioorg Med Chem Lett ; 24(24): 5818-5823, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25455497

ABSTRACT

Starting from benzylpyrimidine 2, molecular modeling and X-ray crystallography were used to design highly potent inhibitors of Interleukin-2 inducible T-cell kinase (ITK). Sulfonylpyridine 4i showed sub-nanomolar affinity against ITK, was selective versus Lck and its activity in the Jurkat cell-based assay was greatly improved over 2.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemical synthesis , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyridines/chemistry , Binding Sites , Crystallography, X-Ray , Kinetics , Molecular Dynamics Simulation , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Protein-Tyrosine Kinases/metabolism , Pyrazoles/chemistry , Pyridines/chemical synthesis , Pyridines/metabolism , Structure-Activity Relationship , Sulfones/chemistry
3.
Bioorg Med Chem Lett ; 23(23): 6331-5, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24138940

ABSTRACT

Inhibition of the non-receptor tyrosine kinase ITK, a component of the T-cell receptor signalling cascade, may represent a novel treatment for allergic asthma. Here we report the structure-based optimization of a series of benzothiazole amides that demonstrate sub-nanomolar inhibitory potency against ITK with good cellular activity and kinase selectivity. We also elucidate the binding mode of these inhibitors by solving the X-ray crystal structures of several inhibitor-ITK complexes.


Subject(s)
Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Benzothiazoles/chemical synthesis , Crystallography, X-Ray , Drug Design , Humans , Mice , Models, Molecular , Protein-Tyrosine Kinases/chemistry , Signal Transduction , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 20(4): 1368-72, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20097071

ABSTRACT

A pharmacophore model was built, based on known CGRP receptor antagonists, and this was used to aid the identification of novel leads. Analogues were designed, modelled and synthesised which incorporated alternative 'LHS' fragments linked via either an amide or urea to a privileged 'RHS' fragment commonly found in CGRP receptor antagonists. As a result a novel series of oxadiazole CGRP receptor antagonists has been identified and the subsequent optimisation to enhance both potency and bioavailability is presented.


Subject(s)
Calcitonin Gene-Related Peptide Receptor Antagonists , Drug Design , Migraine Disorders/drug therapy , Oxadiazoles/chemical synthesis , Oxadiazoles/therapeutic use , Administration, Oral , Animals , Models, Molecular , Molecular Structure , Oxadiazoles/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...