Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 32: 106033, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32775560

ABSTRACT

The data presented here were collected from a commercial LG Chem cylindrical INR18650 MJ1 lithium-ion (Li-ion) battery (approximate nominal specifications: 3.5 Ah, 3.6 V, 12.2 Wh). Electrochemical and microstructural information is presented, the latter collected across several length scales using X-ray computed tomography (CT): from cell to particle. One cell-level tomogram, four assembly-level and two electrode/particle-level 3D datasets are available; all data was collected in the pristine state. The electrochemical data consists of the full current and voltage charge-discharge curves for 400 operational cycles. All data has been made freely available via a repository [10.5522/04/c.4994651] in order to aid in the development of improved computational models for commercially-relevant Li-ion battery materials.

2.
Transp Porous Media ; 121(3): 597-620, 2018.
Article in English | MEDLINE | ID: mdl-31258225

ABSTRACT

Hysteresis in the saturation versus capillary pressure curves of neutrally wettable fibrous media was simulated with a random pore network model using a Voronoi diagram approach. The network was calibrated to fit experimental air-water capillary pressure data collected for carbon fibre paper commonly used as a gas diffusion layer in fuel cells. These materials exhibit unusually strong capillary hysteresis, to the extent that water injection and withdrawal occur at positive and negative capillary pressures, respectively. Without the need to invoke contact angle hysteresis, this capillary behaviour is re-produced when using a pore-scale model based on the curvature of a meniscus passing through the centre of a toroid. The classic Washburn relation was shown to produce erroneous results, and its use is not recommended when modelling fibrous media. The important effect of saturation distribution on the effective diffusivity of the medium was also investigated for both water injection and withdrawal cases. The findings have bearing on the understanding of both capillarity in fibrous media and fuel cell design.

SELECTION OF CITATIONS
SEARCH DETAIL