Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Med Entomol ; 61(2): 345-353, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38253990

ABSTRACT

The objectives of this study were to compare dengue virus (DENV) cases, deaths, case-fatality ratio [CFR], and meteorological parameters between the first and the recent decades of this century (2000-2010 vs. 2011-2022) and to describe the trends, seasonality, and impact of change of temperature and rainfall patterns on transmission dynamics of dengue in Bangladesh. For the period 2000-2022, dengue cases and death data from Bangladesh's Ministry of Health and Family Welfare's website, and meteorological data from the Bangladesh Meteorological Department were analyzed. A Poisson regression model was performed to identify the impact of meteorological parameters on the monthly dengue cases. A forecast of dengue cases was performed using an autoregressive integrated moving average model. Over the past 23 yr, a total of 244,246 dengue cases were reported including 849 deaths (CFR = 0.35%). The mean annual number of dengue cases increased 8 times during the second decade, with 2,216 cases during 2000-2010 vs. 18,321 cases during 2011-2022. The mean annual number of deaths doubled (21 vs. 46), but the overall CFR has decreased by one-third (0.69% vs. 0.23%). Concurrently, the annual mean temperature increased by 0.49 °C, and rainfall decreased by 314 mm with altered precipitation seasonality. Monthly mean temperature (Incidence risk ratio [IRR]: 1.26), first-lagged rainfall (IRR: 1.08), and second-lagged rainfall (IRR: 1.17) were significantly associated with monthly dengue cases. The increased local temperature and changes in rainfall seasonality might have contributed to the increased dengue cases in Bangladesh.


Subject(s)
Dengue , Animals , Temperature , Bangladesh/epidemiology , Incidence
2.
Int J Infect Dis ; 131: 87-94, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36996998

ABSTRACT

OBJECTIVES: The World Health Organization priority zoonotic pathogen Middle East respiratory syndrome (MERS) coronavirus (CoV) has a high case fatality rate in humans and circulates in camels worldwide. METHODS: We performed a global analysis of human and camel MERS-CoV infections, epidemiology, genomic sequences, clades, lineages, and geographical origins for the period January 1, 2012 to August 3, 2022. MERS-CoV Surface gene sequences (4061 bp) were extracted from GenBank, and a phylogenetic maximum likelihood tree was constructed. RESULTS: As of August 2022, 2591 human MERS cases from 26 countries were reported to the World Health Organization (Saudi Arabia, 2184 cases, including 813 deaths [case fatality rate: 37.2%]) Although declining in numbers, MERS cases continue to be reported from the Middle East. A total of 728 MERS-CoV genomes were identified (the largest numbers were from Saudi Arabia [222: human = 146, camels = 76] and the United Arab Emirates [176: human = 21, camels = 155]). A total of 501 'S'-gene sequences were used for phylogenetic tree construction (camels [n = 264], humans [n = 226], bats [n = 8], other [n=3]). Three MERS-CoV clades were identified: clade B, which is the largest, followed by clade A and clade C. Of the 462 clade B lineages, lineage 5 was predominant (n = 177). CONCLUSION: MERS-CoV remains a threat to global health security. MERS-CoV variants continue circulating in humans and camels. The recombination rates indicate co-infections with different MERS-CoV lineages. Proactive surveillance of MERS-CoV infections and variants of concern in camels and humans worldwide, and development of a MERS vaccine, are essential for epidemic preparedness.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Humans , Middle East Respiratory Syndrome Coronavirus/genetics , Camelus , Phylogeny , Middle East/epidemiology , Saudi Arabia/epidemiology , Genomics , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary
3.
BMJ Glob Health ; 8(1)2023 01.
Article in English | MEDLINE | ID: mdl-36599498

ABSTRACT

The 2014-2016 West Africa Ebola Virus Disease (EVD) Epidemic devastated Guinea's health system and constituted a public health emergency of international concern. Following the crisis, Guinea invested in the establishment of basic health system reforms and crucial legal instruments for strengthening national health security in line with the WHO's recommendations for ensuring better preparedness for (and, therefore, a response to) health emergencies. The investments included the scaling up of Integrated Disease Surveillance and Response; Joint External Evaluation of International Health Regulation capacities; National Action Plan for Health Security; Simulation Exercises; One Health platforms; creation of decentralised structures such as regional and prefectural Emergency Operation Centres; Risk assessment and hazard identification; Expanding human resources capacity; Early Warning Alert System and community preparedness. These investments were tested in the subsequent 2021 EVD outbreak and other epidemics. In this case, there was a timely declaration and response to the 2021 EVD epidemic, a lower-case burden and mortality rate, a shorter duration of the epidemic and a significant reduction in the cost of the response. Similarly, there was timely detection, response and containment of other epidemics including Lassa fever and Marburg virus disease. Findings suggest the utility of the preparedness activities for the early detection and efficient containment of outbreaks, which, therefore, underlines the need for all countries at risk of infectious disease epidemics to invest in similar reforms. Doing so promises to be not only cost-effective but also lifesaving.


Subject(s)
Epidemics , Hemorrhagic Fever, Ebola , Humans , Hemorrhagic Fever, Ebola/diagnosis , Hemorrhagic Fever, Ebola/epidemiology , Hemorrhagic Fever, Ebola/prevention & control , Guinea/epidemiology , Epidemics/prevention & control , Disease Outbreaks/prevention & control , Africa, Western/epidemiology
4.
MMWR Morb Mortal Wkly Rep ; 72(3): 68-72, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36656790

ABSTRACT

Monkeypox (mpox) is a zoonotic disease caused by Monkeypox virus (MPXV), an Orthopoxvirus; the wild mammalian reservoir species is not known. There are two genetic clades of MPXV: clade I and clade II (historically found in central and west Africa, respectively), with only Cameroon reporting both clades (1). Human cases have historically been reported from 1) mostly rural, forested areas in some central and west African countries; 2) countries reporting cases related to population migration or travel of infected persons; and 3) exposure to imported infected mammals (2). The annual number of cases in Africa has risen since 2014 and cumulatively surpassed reports from the previous 40 years for most countries. This reemergence of mpox might be due to a combination of environmental and ecological changes, animal or human movement, the cessation of routine smallpox vaccination since its eradication in 1980, improvements in disease detection and diagnosis, and genetic changes in the virus (2). This report describes the epidemiology of mpox since 1970 and during 2018-2021, using data from national surveillance programs, World Health Organization (WHO) bulletins, and case reports, and addresses current diagnostic and treatment challenges in countries with endemic disease. During 2018-2021, human cases were recognized and confirmed in six African countries, with most detected in the Democratic Republic of the Congo (DRC) and Nigeria. The reemergence and increase in cases resulted in its being listed in 2019 as a priority disease for immediate and routine reporting through the Integrated Disease Surveillance and Response strategy in the WHO African region.* In eight instances, patients with mpox were identified in four countries outside of Africa after travel from Nigeria. Since 2018, introductory and intermediate training courses on prevention and control of mpox for public health and health care providers have been available online at OpenWHO.†,§ The global outbreak that began in May 2022¶ has further highlighted the need for improvements in laboratory-based surveillance and access to treatments and vaccines to prevent and contain the infection, including in areas of Africa with endemic mpox.


Subject(s)
Mpox (monkeypox) , Animals , Humans , Mpox (monkeypox)/epidemiology , Monkeypox virus/genetics , Zoonoses , Public Health , Nigeria , Mammals
5.
Lancet ; 401(10377): 673-687, 2023 02 25.
Article in English | MEDLINE | ID: mdl-36682374

ABSTRACT

The COVID-19 pandemic has exposed faults in the way we assess preparedness and response capacities for public health emergencies. Existing frameworks are limited in scope, and do not sufficiently consider complex social, economic, political, regulatory, and ecological factors. One Health, through its focus on the links among humans, animals, and ecosystems, is a valuable approach through which existing assessment frameworks can be analysed and new ways forward proposed. Although in the past few years advances have been made in assessment tools such as the International Health Regulations Joint External Evaluation, a rapid and radical increase in ambition is required. To sufficiently account for the range of complex systems in which health emergencies occur, assessments should consider how problems are defined across stakeholders and the wider sociopolitical environments in which structures and institutions operate. Current frameworks do little to consider anthropogenic factors in disease emergence or address the full array of health security hazards across the social-ecological system. A complex and interdependent set of challenges threaten human, animal, and ecosystem health, and we cannot afford to overlook important contextual factors, or the determinants of these shared threats. Health security assessment frameworks should therefore ensure that the process undertaken to prioritise and build capacity adheres to core One Health principles and that interventions and outcomes are assessed in terms of added value, trade-offs, and cobenefits across human, animal, and environmental health systems.


Subject(s)
COVID-19 , One Health , Animals , Humans , Global Health , Ecosystem , Emergencies , Pandemics
6.
BMJ Glob Health ; 8(1)2023 01.
Article in English | MEDLINE | ID: mdl-36707093

ABSTRACT

Unexpected pathogen transmission between animals, humans and their shared environments can impact all aspects of society. The Tripartite organisations-the Food and Agriculture Organization of the United Nations (FAO), the World Health Organization (WHO), and the World Organisation for Animal Health (WOAH)-have been collaborating for over two decades. The inclusion of the United Nations Environment Program (UNEP) with the Tripartite, forming the 'Quadripartite' in 2021, creates a new and important avenue to engage environment sectors in the development of additional tools and resources for One Health coordination and improved health security globally. Beginning formally in 2010, the Tripartite set out strategic directions for the coordination of global activities to address health risks at the human-animal-environment interface. This paper highlights the historical background of this collaboration in the specific area of health security, using country examples to demonstrate lessons learnt and the evolution and pairing of Tripartite programmes and processes to jointly develop and deliver capacity strengthening tools to countries and strengthen performance for iterative evaluations. Evaluation frameworks, such as the International Health Regulations (IHR) Monitoring and Evaluation Framework, the WOAH Performance of Veterinary Services (PVS) Pathway and the FAO multisectoral evaluation tools for epidemiology and surveillance, support a shared global vision for health security, ultimately serving to inform decision making and provide a systematic approach for improved One Health capacity strengthening in countries. Supported by the IHR-PVS National Bridging Workshops and the development of the Tripartite Zoonoses Guide and related operational tools, the Tripartite and now Quadripartite, are working alongside countries to address critical gaps at the human-animal-environment interface.


Subject(s)
One Health , Animals , Humans , World Health Organization , Global Health , United Nations , International Health Regulations
10.
Am J Trop Med Hyg ; 106(2): 394-397, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35008053

ABSTRACT

Melioidosis is a tropical infectious disease caused by the soil-dwelling bacterium Burkholderia pseudomallei with a mortality of up to 50% in low resource settings. Only a few cases have been reported from African countries. However, studies on the global burden of melioidosis showed that Africa holds a significant unrecognized disease burden, with Nigeria being at the top of the list. The first World Health Organization African Melioidosis Workshop was organized in Lagos, Nigeria, with representatives of health authorities, microbiology laboratories, and clinical centers from across the continent. Dedicated hands-on training was given on laboratory diagnostics of B. pseudomallei. This report summarises the meeting objectives, including raising awareness of melioidosis and building capacity for the detection, diagnosis, biosafety, treatment, and prevention across Africa. Further, collaboration with regional and international experts provided a platform for sharing ideas on best practices.


Subject(s)
Capacity Building , Congresses as Topic , Melioidosis/diagnosis , Melioidosis/prevention & control , Africa/epidemiology , Burkholderia pseudomallei , Humans , Nigeria , World Health Organization
11.
BMJ Glob Health ; 6(7)2021 07.
Article in English | MEDLINE | ID: mdl-34210688

ABSTRACT

The COVID-19 pandemic is a devastating reminder that mitigating the threat of emerging zoonotic outbreaks relies on our collective capacity to work across human health, animal health and environment sectors. Despite the critical need for shared approaches, collaborative benchmarks in the International Health Regulations (IHR) Monitoring and Evaluation Framework and more specifically the Joint External Evaluation (JEE) often reveal low levels of performance in collaborative technical areas (TAs), thus identifying a real need to work on the human-animal-environment interface to improve health security. The National Bridging Workshops (NBWs) proposed jointly by the World Organisation of Animal Health and World Health Organization (WHO) provide opportunity for national human health, animal health, environment and other relevant sectors in countries to explore the efficiency and gaps in their coordination for the management of zoonotic diseases. The results, gathered in a prioritised roadmap, support the operationalisation of the recommendations made during JEE for TAs where a multisectoral One Health approach is beneficial. For those collaborative TAs (12 out of 19 in the JEE), more than two-thirds of the recommendations can be implemented through one or multiple activities jointly agreed during NBW. Interestingly, when associated with the WHO Benchmark Tool for IHR, it appears that NBW activities are often associated with lower level of performance than anticipated during the JEE missions, revealing that countries often overestimate their capacities at the human-animal-environment interface. Deeper, more focused and more widely shared discussions between professionals highlight the need for concrete foundations of multisectoral coordination to meet goals for One Health and improved global health security through IHR.


Subject(s)
COVID-19 , One Health , Animals , Humans , International Cooperation , International Health Regulations , Pandemics , SARS-CoV-2
12.
PLoS One ; 16(6): e0245312, 2021.
Article in English | MEDLINE | ID: mdl-34061856

ABSTRACT

Collaborative, One Health approaches support governments to effectively prevent, detect and respond to emerging health challenges, such as zoonotic diseases, that arise at the human-animal-environmental interfaces. To overcome these challenges, operational and outcome-oriented tools that enable animal health and human health services to work specifically on their collaboration are required. While international capacity and assessment frameworks such as the IHR-MEF (International Health Regulations-Monitoring and Evaluation Framework) and the OIE PVS (Performance of Veterinary Services) Pathway exist, a tool and process that could assess and strengthen the interactions between human and animal health sectors was needed. Through a series of six phased pilots, the IHR-PVS National Bridging Workshop (NBW) method was developed and refined. The NBW process gathers human and animal health stakeholders and follows seven sessions, scheduled across three days. The outputs from each session build towards the next one, following a structured process that goes from gap identification to joint planning of corrective measures. The NBW process allows human and animal health sector representatives to jointly identify actions that support collaboration while advancing evaluation goals identified through the IHR-MEF and the OIE PVS Pathway. By integrating sector-specific and collaborative goals, the NBWs help countries in creating a realistic, concrete and practical joint road map for enhanced compliance to international standards as well as strengthened preparedness and response for health security at the human-animal interface.


Subject(s)
Global Health , Goals , International Cooperation , International Health Regulations , Public Health , Animals , Disease Outbreaks/prevention & control , Humans , Zoonoses
13.
Clin Infect Dis ; 69(Suppl 2): S49-S57, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31505629

ABSTRACT

BACKGROUND: Bacterial meningitis is a major cause of morbidity and mortality in sub-Saharan Africa. We analyzed data from the World Health Organization's (WHO) Invasive Bacterial Vaccine-preventable Diseases Surveillance Network (2011-2016) to describe the epidemiology of laboratory-confirmed Streptococcus pneumoniae (Spn), Neisseria meningitidis, and Haemophilus influenzae meningitis within the WHO African Region. We also evaluated declines in vaccine-type pneumococcal meningitis following pneumococcal conjugate vaccine (PCV) introduction. METHODS: Reports of meningitis in children <5 years old from sentinel surveillance hospitals in 26 countries were classified as suspected, probable, or confirmed. Confirmed meningitis cases were analyzed by age group and subregion (South-East and West-Central). We described case fatality ratios (CFRs), pathogen distribution, and annual changes in serotype and serogroup, including changes in vaccine-type Spn meningitis following PCV introduction. RESULTS: Among 49 844 reported meningitis cases, 1670 (3.3%) were laboratory-confirmed. Spn (1007/1670 [60.3%]) was the most commonly detected pathogen; vaccine-type Spn meningitis cases declined over time. CFR was the highest for Spn meningitis: 12.9% (46/357) in the South-East subregion and 30.9% (89/288) in the West-Central subregion. Meningitis caused by N. meningitidis was more common in West-Central than South-East Africa (321/954 [33.6%] vs 110/716 [15.4%]; P < .0001). Haemophilus influenzae (232/1670 [13.9%]) was the least prevalent organism. CONCLUSIONS: Spn was the most common cause of pediatric bacterial meningitis in the African region even after reported cases declined following PCV introduction. Sustaining robust surveillance is essential to monitor changes in pathogen distribution and to inform and guide vaccination policies.


Subject(s)
Meningitis, Bacterial/epidemiology , Sentinel Surveillance , Vaccine-Preventable Diseases/epidemiology , Vaccine-Preventable Diseases/microbiology , World Health Organization , Africa, Eastern/epidemiology , Child, Preschool , Female , Haemophilus influenzae type b/classification , Humans , Infant , Male , Meningitis, Bacterial/mortality , Mortality , Neisseria meningitidis/classification , Pneumococcal Vaccines/administration & dosage , Prevalence , Serogroup , South Africa/epidemiology , Streptococcus pneumoniae/classification , Vaccination/statistics & numerical data , Vaccines, Conjugate/administration & dosage
14.
Article in English | AIM (Africa) | ID: biblio-1256297

ABSTRACT

In recent years the WHO African Region has seen a growth in clinical development of new vaccines as well as their introduction into the national immunization programmes of many countries. Recognizing the critical need for vaccine safety and pharmacovigilance; WHO has been supporting individual and institutional capacity building in the Region to strengthen the monitoring and response to adverse events following immunization through implementation of the Global Vaccine Safety Blueprint. This framework is discussed along with general points about the importance of ensuring vaccine safety and the system needed to enable this. The article ends with a brief overview of the status of vaccine safety and pharmacovigilance and the key priorities for countries in the Region for the immediate future


Subject(s)
Pharmacovigilance , Safety , Vaccines , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL
...