Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nature ; 620(7973): 366-373, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37468637

ABSTRACT

Neurons in the posterior parietal cortex contribute to the execution of goal-directed navigation1 and other decision-making tasks2-4. Although molecular studies have catalogued more than 50 cortical cell types5, it remains unclear what distinct functions they have in this area. Here we identified a molecularly defined subset of somatostatin (Sst) inhibitory neurons that, in the mouse posterior parietal cortex, carry a cell-type-specific error-correction signal for navigation. We obtained repeatable experimental access to these cells using an adeno-associated virus in which gene expression is driven by an enhancer that functions specifically in a subset of Sst cells6. We found that during goal-directed navigation in a virtual environment, this subset of Sst neurons activates in a synchronous pattern that is distinct from the activity of surrounding neurons, including other Sst neurons. Using in vivo two-photon photostimulation and ex vivo paired patch-clamp recordings, we show that nearby cells of this Sst subtype excite each other through gap junctions, revealing a self-excitation circuit motif that contributes to the synchronous activity of this cell type. These cells selectively activate as mice execute course corrections for deviations in their virtual heading during navigation towards a reward location, for both self-induced and experimentally induced deviations. We propose that this subtype of Sst neurons provides a self-reinforcing and cell-type-specific error-correction signal in the posterior parietal cortex that may help with the execution and learning of accurate goal-directed navigation trajectories.


Subject(s)
Neurons , Parietal Lobe , Animals , Mice , Learning , Neurons/metabolism , Parietal Lobe/cytology , Parietal Lobe/metabolism , Goals , Somatostatin/metabolism , Neural Inhibition , Spatial Navigation , Patch-Clamp Techniques , Gap Junctions/metabolism
2.
Cell Rep ; 42(3): 112173, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36862556

ABSTRACT

The specification of synaptic properties is fundamental for the function of neuronal circuits. "Terminal selector" transcription factors coordinate terminal gene batteries that specify cell-type-specific properties. Moreover, pan-neuronal splicing regulators have been implicated in directing neuronal differentiation. However, the cellular logic of how splicing regulators instruct specific synaptic properties remains poorly understood. Here, we combine genome-wide mapping of mRNA targets and cell-type-specific loss-of-function studies to uncover the contribution of the RNA-binding protein SLM2 to hippocampal synapse specification. Focusing on pyramidal cells and somatostatin (SST)-positive GABAergic interneurons, we find that SLM2 preferentially binds and regulates alternative splicing of transcripts encoding synaptic proteins. In the absence of SLM2, neuronal populations exhibit normal intrinsic properties, but there are non-cell-autonomous synaptic phenotypes and associated defects in a hippocampus-dependent memory task. Thus, alternative splicing provides a critical layer of gene regulation that instructs specification of neuronal connectivity in a trans-synaptic manner.


Subject(s)
Alternative Splicing , Neurons , Alternative Splicing/genetics , Neurons/metabolism , Synapses/metabolism , Pyramidal Cells , Interneurons , Hippocampus/metabolism
3.
Nat Rev Neurosci ; 22(3): 137-151, 2021 03.
Article in English | MEDLINE | ID: mdl-33420412

ABSTRACT

The function of neuronal circuits relies on the properties of individual neuronal cells and their synapses. We propose that a substantial degree of synapse formation and function is instructed by molecular codes resulting from transcriptional programmes. Recent studies on the Neurexin protein family and its ligands provide fundamental insight into how synapses are assembled and remodelled, how synaptic properties are specified and how single gene mutations associated with neurodevelopmental and psychiatric disorders might modify the operation of neuronal circuits and behaviour. In this Review, we first summarize insights into Neurexin function obtained from various model organisms. We then discuss the mechanisms and logic of the cell type-specific regulation of Neurexin isoforms, in particular at the level of alternative mRNA splicing. Finally, we propose a conceptual framework for how combinations of synaptic protein isoforms act as 'senders' and 'readers' to instruct synapse formation and the acquisition of cell type-specific and synapse-specific functional properties.


Subject(s)
Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Synapses/genetics , Synapses/physiology , Alternative Splicing , Animals , Humans , Receptors, Cell Surface
4.
Neuron ; 106(1): 37-65.e5, 2020 04 08.
Article in English | MEDLINE | ID: mdl-32027825

ABSTRACT

The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities.


Subject(s)
Gene Targeting/methods , Integrases/genetics , Neurons/metabolism , Oocytes/metabolism , Recombination, Genetic/genetics , Spermatozoa/metabolism , Animals , Female , Genes, Reporter , Germ Cells , Male , Mice , Mice, Transgenic , Mosaicism
5.
Nat Neurosci ; 22(10): 1709-1717, 2019 10.
Article in English | MEDLINE | ID: mdl-31451803

ABSTRACT

Nervous system function relies on complex assemblies of distinct neuronal cell types that have unique anatomical and functional properties instructed by molecular programs. Alternative splicing is a key mechanism for the expansion of molecular repertoires, and protein splice isoforms shape neuronal cell surface recognition and function. However, the logic of how alternative splicing programs are arrayed across neuronal cells types is poorly understood. We systematically mapped ribosome-associated transcript isoforms in genetically defined neuron types of the mouse forebrain. Our dataset provides an extensive resource of transcript diversity across major neuron classes. We find that neuronal transcript isoform profiles reliably distinguish even closely related classes of pyramidal cells and inhibitory interneurons in the mouse hippocampus and neocortex. These highly specific alternative splicing programs selectively control synaptic proteins and intrinsic neuronal properties. Thus, transcript diversification via alternative splicing is a central mechanism for the functional specification of neuronal cell types and circuits.


Subject(s)
Alternative Splicing/genetics , Neurons/physiology , Ribosomes/genetics , Transcription, Genetic/genetics , Animals , Cells, Cultured , Female , Gene Expression Regulation/genetics , Hippocampus/cytology , Interneurons/physiology , Male , Mice , Mice, Inbred C57BL , Neocortex/cytology , Neurons/classification , Presynaptic Terminals/metabolism , Prosencephalon/cytology , Protein Isoforms/genetics , Pyramidal Cells/physiology
7.
Elife ; 52016 12 13.
Article in English | MEDLINE | ID: mdl-27960072

ABSTRACT

The unique anatomical and functional features of principal and interneuron populations are critical for the appropriate function of neuronal circuits. Cell type-specific properties are encoded by selective gene expression programs that shape molecular repertoires and synaptic protein complexes. However, the nature of such programs, particularly for post-transcriptional regulation at the level of alternative splicing is only beginning to emerge. We here demonstrate that transcripts encoding the synaptic adhesion molecules neurexin-1,2,3 are commonly expressed in principal cells and interneurons of the mouse hippocampus but undergo highly differential, cell type-specific alternative splicing. Principal cell-specific neurexin splice isoforms depend on the RNA-binding protein Slm2. By contrast, most parvalbumin-positive (PV+) interneurons lack Slm2, express a different neurexin splice isoform and co-express the corresponding splice isoform-specific neurexin ligand Cbln4. Conditional ablation of Nrxn alternative splice insertions selectively in PV+ cells results in elevated hippocampal network activity and impairment in a learning task. Thus, PV-cell-specific alternative splicing of neurexins is critical for neuronal circuit function.


Subject(s)
Alternative Splicing , Gene Expression Regulation , Hippocampus/physiology , Nerve Tissue Proteins/biosynthesis , Neural Cell Adhesion Molecules/biosynthesis , Neurons/physiology , Animals , Calcium-Binding Proteins , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules/genetics , Protein Precursors/metabolism , RNA-Binding Proteins/metabolism
8.
Science ; 352(6288): 982-6, 2016 May 20.
Article in English | MEDLINE | ID: mdl-27174676

ABSTRACT

Alternative RNA splicing represents a central mechanism for expanding the coding power of genomes. Individual RNA-binding proteins can control alternative splicing choices in hundreds of RNA transcripts, thereby tuning amounts and functions of large numbers of cellular proteins. We found that the RNA-binding protein SLM2 is essential for functional specification of glutamatergic synapses in the mouse hippocampus. Genome-wide mapping revealed a markedly selective SLM2-dependent splicing program primarily consisting of only a few target messenger RNAs that encode synaptic proteins. Genetic correction of a single SLM2-dependent target exon in the synaptic recognition molecule neurexin-1 was sufficient to rescue synaptic plasticity and behavioral defects in Slm2 knockout mice. These findings uncover a highly selective alternative splicing program that specifies synaptic properties in the central nervous system.


Subject(s)
Alternative Splicing , Glutamic Acid/physiology , Neurons/physiology , RNA-Binding Proteins/physiology , Synapses/physiology , Animals , Behavior, Animal , Calcium-Binding Proteins , Exons , Genome-Wide Association Study , Hippocampus/cytology , Hippocampus/physiology , Mice , Mice, Knockout , Neural Cell Adhesion Molecules/genetics , Neural Cell Adhesion Molecules/physiology , Neuronal Plasticity/genetics , Neuronal Plasticity/physiology , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , Sequence Deletion , Synaptic Transmission/genetics , Synaptic Transmission/physiology
9.
Elife ; 52016 05 25.
Article in English | MEDLINE | ID: mdl-27222228

ABSTRACT

In animal locomotion a tradeoff exists between stereotypy and flexibility: fast long-distance travelling (LDT) requires coherent regular motions, while local sampling and area-restricted search (ARS) rely on flexible movements. We report here on a posture control system in C. elegans that coordinates these needs. Using quantitative posture analysis we explain worm locomotion as a composite of two modes: regular undulations versus flexible turning. Graded reciprocal regulation of both modes allows animals to flexibly adapt their locomotion strategy under sensory stimulation along a spectrum ranging from LDT to ARS. Using genetics and functional imaging of neural activity we characterize the counteracting interneurons AVK and DVA that utilize FLP-1 and NLP-12 neuropeptides to control both motor modes. Gradual regulation of behaviors via this system is required for spatial navigation during chemotaxis. This work shows how a nervous system controls simple elementary features of posture to generate complex movements for goal-directed locomotion strategies.


Subject(s)
Caenorhabditis elegans/physiology , Locomotion , Motor Neurons/physiology , Nervous System Physiological Phenomena , Animals , Caenorhabditis elegans Proteins/metabolism , Chemotaxis , Models, Neurological , Neuropeptides/metabolism
10.
Cell Rep ; 11(12): 1953-65, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26095367

ABSTRACT

To adapt to an ever-changing environment, animals consolidate some, but not all, learning experiences to long-term memory. In mammals, long-term memory consolidation often involves neural pathway reactivation hours after memory acquisition. It is not known whether this delayed-reactivation schema is common across the animal kingdom or how information is stored during the delay period. Here, we show that, during courtship suppression learning, Drosophila exhibits delayed long-term memory consolidation. We also show that the same class of dopaminergic neurons engaged earlier in memory acquisition is also both necessary and sufficient for delayed long-term memory consolidation. Furthermore, we present evidence that, during learning, the translational regulator Orb2A tags specific synapses of mushroom body neurons for later consolidation. Consolidation involves the subsequent recruitment of Orb2B and the activity-dependent synthesis of CaMKII. Thus, our results provide evidence for the role of a neuromodulated, synapse-restricted molecule bridging memory acquisition and long-term memory consolidation in a learning animal.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Drosophila Proteins/genetics , Memory Consolidation/physiology , Memory, Long-Term/physiology , Synapses/genetics , Transcription Factors/genetics , mRNA Cleavage and Polyadenylation Factors/genetics , Animals , Animals, Genetically Modified , Drosophila , Learning/physiology , Mushroom Bodies/physiology , Neurons/physiology , Synapses/physiology
11.
J Neurosci ; 34(50): 16755-61, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25505328

ABSTRACT

The unique physiological and morphological properties of neuronal populations are crucial for the appropriate functioning of neuronal circuits. Alternative splicing represents an attractive mechanism for generating cell type-specific molecular repertoires that steer neuronal development and function. However, the mechanisms that link neuronal identity to alternative splicing programs are poorly understood. We report that cell type-specific, mutually exclusive expression of two alternative splicing regulators, SLM1 and SLM2, in the mouse hippocampus is achieved by a cross-repression mechanism. Deletion of SLM2 in vivo modifies alternative splicing of its paralog Slm1 and stabilizes its mRNA, resulting in expression of SLM1 in previously SLM2-expressing cells. Despite this ectopic upregulation of SLM1, loss of SLM2 severely disrupts the alternative splicing regulation of Nrxn1, Nrxn2, and Nrxn3, highlighting that the two SLM paralogs have partially divergent functions. Our study uncovers a hierarchical, SLM2-dependent mechanism for establishing cell type-specific expression of neuronal splicing regulators in vivo.


Subject(s)
Alternative Splicing/physiology , Neurons/metabolism , Nonsense Mediated mRNA Decay/physiology , RNA-Binding Proteins/biosynthesis , Animals , Female , Gene Expression Regulation , HEK293 Cells , Hippocampus/metabolism , Humans , Male , Mice , Mice, 129 Strain , Mice, Knockout
12.
PLoS Genet ; 9(5): e1003511, 2013 May.
Article in English | MEDLINE | ID: mdl-23671427

ABSTRACT

Animals harbor specialized neuronal systems that are used for sensing and coordinating responses to changes in oxygen (O2) and carbon dioxide (CO2). In Caenorhabditis elegans, the O2/CO2 sensory system comprises functionally and morphologically distinct sensory neurons that mediate rapid behavioral responses to exquisite changes in O2 or CO2 levels via different sensory receptors. How the diversification of the O2- and CO2-sensing neurons is established is poorly understood. We show here that the molecular identity of both the BAG (O2/CO2-sensing) and the URX (O2-sensing) neurons is controlled by the phylogenetically conserved SoxD transcription factor homolog EGL-13. egl-13 mutant animals fail to fully express the distinct terminal gene batteries of the BAG and URX neurons and, as such, are unable to mount behavioral responses to changes in O2 and CO2. We found that the expression of egl-13 is regulated in the BAG and URX neurons by two conserved transcription factors-ETS-5(Ets factor) in the BAG neurons and AHR-1(bHLH factor) in the URX neurons. In addition, we found that EGL-13 acts in partially parallel pathways with both ETS-5 and AHR-1 to direct BAG and URX neuronal fate respectively. Finally, we found that EGL-13 is sufficient to induce O2- and CO2-sensing cell fates in some cellular contexts. Thus, the same core regulatory factor, egl-13, is required and sufficient to specify the distinct fates of O2- and CO2-sensing neurons in C. elegans. These findings extend our understanding of mechanisms of neuronal diversification and the regulation of molecular factors that may be conserved in higher organisms.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology , Transcription Factors/genetics , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/metabolism , Carbon Dioxide/metabolism , Carbon Dioxide/physiology , Mutation , Oxygen/metabolism , Oxygen/physiology , Proto-Oncogene Proteins c-ets/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Sensory Receptor Cells/cytology , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL