Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev Lett ; 121(6): 066101, 2018 Aug 10.
Article in English | MEDLINE | ID: mdl-30141670

ABSTRACT

Thin films of poly(methyl methacrylate) and poly(vinyl chloride) of different thickness are used to investigate the effect of spatial confinement on the efficiency of bond breaking induced by 2 MeV H^{+} and 2.1 GeV Bi ions. Effective cross sections for oxygen and chlorine loss are extracted for films down to a thickness of about 5 nm and are compared to theoretical estimations based on radial energy density profiles simulated with geant-dna. The cross sections are to a large extent thickness independent, indicating that bond breaking is dominated by short-range processes. This is in contrast to the strongly reduced efficiencies found recently for cratering induced by high-energy ions in similar ultrathin polymer films [Phys. Rev. Lett. 114, 118302 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.118302].

2.
Phys Rev Lett ; 114(11): 118302, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25839315

ABSTRACT

We show direct experimental evidence that radiation effects produced by single MeV heavy ions on a polymer surface are weakened when the length of the ion track in the material is confined into layers of a few tens of nanometers. Deviation from the bulk (thick film) behavior of ion-induced craters starts at a critical thickness as large as ∼40 nm, due to suppression of long-range additive effects of excited atoms along the track. Good agreement was found between the experimental results, molecular dynamic simulations, and an analytical model.


Subject(s)
Heavy Ions , Models, Chemical , Polymethyl Methacrylate/chemistry , Molecular Dynamics Simulation
SELECTION OF CITATIONS
SEARCH DETAIL