Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 15: 1407336, 2024.
Article in English | MEDLINE | ID: mdl-38895630

ABSTRACT

Unhealthy lifestyle habits including a sedentary life, the lack of physical activity, and wrong dietary habits are the major ones responsible for the constant increase of obesity and metabolic disorders prevalence worldwide; therefore, the scientific community pays significant attention to the pharmacotherapy of such diseases, beyond lifestyle interventions, the use of medical devices, and surgical approaches. The intricate interplay between autophagy and inflammation appears crucial to orchestrate fundamental aspects of cellular and organismal responses to challenging stimuli, including metabolic insults; hence, when these two processes are dysregulated (enhanced or suppressed) they produce pathologic effects. The present review summarizes the existing literature reporting the intricate affair between autophagy and inflammation in the context of metabolic disorders, including obesity, diabetes, and liver metabolic diseases (non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH)). The evidence collected so far suggests that an alteration of autophagy might lead to maladaptive metabolic and inflammatory responses thus exacerbating the severity of the disease, and the most prominent conclusion underlies that autophagy might exert a protective function by contributing to balance inflammation. However, the complex nature of obesity and metabolic disorders might represent a limit of the studies; indeed, although many pharmacological treatments, producing positive metabolic effects, are also able to modulate autophagic flux and inflammation, it is not clear if the final beneficial effect might occur only by their mechanism of action, rather than because of additionally involved pathways. Finally, although future studies are needed, the observation that anti-obesity and antidiabetic drugs already on the market, including incretin mimetic agents, facilitate autophagy by dampening inflammation, strongly contributes to the idea that autophagy might represent a druggable system for the development of novel pharmacological tools that might represent an attractive strategy for the treatment of obesity and metabolic disorders.

2.
J Immunother Cancer ; 11(10)2023 10.
Article in English | MEDLINE | ID: mdl-37880182

ABSTRACT

BACKGROUND: Nicotinamide phosphoribosyltransferase (NAMPT) is a key intracellular enzyme that participates in nicotinamide adenine dinucleotide (NAD) homeostasis as well as a released cytokine (eNAMPT) that is elevated in inflammatory conditions and in cancer. In patients with breast cancer, circulating eNAMPT is elevated and its plasma levels correlate with prognosis and staging. In light of this, we investigated the contribution of eNAMPT in triple negative mammary carcinoma progression by investigating the effect of its neutralization via a specific neutralizing monoclonal antibody (C269). METHODS: We used female BALB/c mice injected with 4T1 clone 5 cells and female C57BL6 injected with EO771 cells, evaluating tumoral size, spleen weight and number of metastases. We injected two times a week the anti-eNAMPT neutralizing antibody and we sacrificed the mice after 28 days. Harvested tumors were analyzed by histopathology, flow cytometry, western blot, immunohistochemistry, immunofluorescence and RNA sequencing to define tumor characteristics (isolating tumor infiltrating lymphocytes and tumoral cells) and to investigate the molecular mechanisms behind the observed phenotype. Moreover, we dissected the functional relationship between T cells and tumoral cells using three-dimensional (3D) co-cultures. RESULTS: The neutralization of eNAMPT with C269 led to decreased tumor size and reduced number of lung metastases. RNA sequencing and functional assays showed that eNAMPT controlled T-cell response via the programmed death-ligand 1/programmed cell death protein 1 (PD-L1/PD-1) axis and its neutralization led to a restoration of antitumoral immune responses. In particular, eNAMPT neutralization was able to activate CD8+IFNγ+GrzB+ T cells, reducing the immunosuppressive phenotype of T regulatory cells. CONCLUSIONS: These studies indicate for the first time eNAMPT as a novel immunotherapeutic target for triple negative breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Mice , Animals , Nicotinamide Phosphoribosyltransferase/metabolism , Immune Evasion , Cytokines/metabolism , Prognosis
3.
FASEB J ; 37(3): e22825, 2023 03.
Article in English | MEDLINE | ID: mdl-36809677

ABSTRACT

Although the progression of non-alcoholic fatty liver disease (NAFLD) from steatosis to steatohepatitis (NASH) and cirrhosis remains poorly understood, a critical role for dysregulated innate immunity has emerged. We examined the utility of ALT-100, a monoclonal antibody (mAb), in reducing NAFLD severity and progression to NASH/hepatic fibrosis. ALT-100 neutralizes eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a novel damage-associated molecular pattern protein (DAMP) and Toll-like receptor 4 (TLR4) ligand. Histologic and biochemical markers were measured in liver tissues and plasma from human NAFLD subjects and NAFLD mice (streptozotocin/high-fat diet-STZ/HFD, 12 weeks). Human NAFLD subjects (n = 5) exhibited significantly increased NAMPT hepatic expression and significantly elevated plasma levels of eNAMPT, IL-6, Ang-2, and IL-1RA compared to healthy controls, with IL-6 and Ang-2 levels significantly increased in NASH non-survivors. Untreated STZ/HFD-exposed mice displayed significant increases in NAFLD activity scores, liver triglycerides, NAMPT hepatic expression, plasma cytokine levels (eNAMPT, IL-6, and TNFα), and histologic evidence of hepatocyte ballooning and hepatic fibrosis. Mice receiving the eNAMPT-neutralizing ALT-100 mAb (0.4 mg/kg/week, IP, weeks 9 to 12) exhibited marked attenuation of each index of NASH progression/severity. Thus, activation of the eNAMPT/TLR4 inflammatory pathway contributes to NAFLD severity and NASH/hepatic fibrosis. ALT-100 is potentially an effective therapeutic approach to address this unmet NAFLD need.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Toll-Like Receptor 4/metabolism , Interleukin-6/metabolism , Liver/metabolism , Liver Cirrhosis/metabolism
4.
Front Med (Lausanne) ; 10: 1116862, 2023.
Article in English | MEDLINE | ID: mdl-36817780

ABSTRACT

Background: Nicotinamide phosphoribosyltransferase (NAMPT) and nicotinic acid phosphoribosyl transferase (NAPRT) are key intracellular enzymes that participate in the biosynthesis on NAD but have also been shown to be released as proinflammatory cytokines. A number of reports have shown that circulating NAMPT is increased in serum of patients with inflammatory disorders, including inflammatory bowel diseases (IBD), while nothing is known regarding circulating NAPRT and the presence of both cytokines in IBD patient stools. In the present study, we evaluated eNAMPT and eNAPRT levels in a large cohort of IBD patients not on biological therapy and in a subset that then was prescribed biologics. Methods: We conducted a retro-perspective study on 180 patients, of which 111 underwent subsequent biological treatment (adalimumab, vedolizumab, and ustekinumab). We analyzed eNAMPT and eNAPRT concentrations in serum and faces of IBD patients, correlating them with response to biologics. Results: We now report that eNAMPT and eNAPRT are significantly increased in both serum and stools of IBD patients. NAMPT and NAPRT levels correlate with disease severity, with C reactive protein and with serum IL-6 levels. Importantly, levels of NAMPT in patients starting treatment with adalimumab correlate with response failure at three months: patients with levels above 4 ng/ml were significantly less likely to obtain benefit. Serum NAMPT as a biomarker of response yields a sensitivity of 91% and a specificity of 100%. Conclusion: The present work strongly suggests that a prospective trial evaluating eNAMPT and eNAPRT levels in relation to response to biologicals in IBD should be initiated.

5.
J Transl Autoimmun ; 6: 100181, 2023.
Article in English | MEDLINE | ID: mdl-36619655

ABSTRACT

Rationale: Effective therapies to reduce the severity and high mortality of pulmonary vasculitis and diffuse alveolar hemorrhage (DAH) in patients with systemic lupus erythematosus (SLE) is a serious unmet need. We explored whether biologic neutralization of eNAMPT (extracellular nicotinamide phosphoribosyl-transferase), a novel DAMP and Toll-like receptor 4 ligand, represents a viable therapeutic strategy in lupus vasculitis. Methods: Serum was collected from SLE subjects (n = 37) for eNAMPT protein measurements. In the preclinical pristane-induced murine model of lung vasculitis/hemorrhage, C57BL/6 J mice (n = 5-10/group) were treated with PBS, IgG (1 mg/kg), or the eNAMPT-neutralizing ALT-100 mAb (1 mg/kg, IP or subcutaneously (SQ). Lung injury evaluation (Day 10) included histology/immuno-histochemistry, BAL protein/cellularity, tissue biochemistry, RNA sequencing, and plasma biomarker assessment. Results: SLE subjects showed highly significant increases in blood NAMPT mRNA expression and eNAMPT protein levels compared to healthy controls. Preclinical pristane-exposed mice studies showed significantly increased NAMPT lung tissue expression and increased plasma eNAMPT levels accompanied by marked increases in alveolar hemorrhage and lung inflammation (BAL protein, PMNs, activated monocytes). In contrast, ALT-100 mAb-treated mice showed significant attenuation of inflammatory lung injury, alveolar hemorrhage, BAL protein, tissue leukocytes, and plasma inflammatory cytokines (eNAMPT, IL-6, IL-8). Lung RNA sequencing showed pristane-induced activation of inflammatory genes/pathways including NFkB, cytokine/chemokine, IL-1ß, and MMP signaling pathways, each rectified in ALT-100 mAb-treated mice. Conclusions: These findings highlight the role of eNAMPT/TLR4-mediated inflammatory signaling in the pathobiology of SLE pulmonary vasculitis and alveolar hemorrhage. Biologic neutralization of this novel DAMP appears to serve as a viable strategy to reduce the severity of SLE lung vasculitis.

6.
Eur J Med Chem ; 245(Pt 1): 114895, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36370553

ABSTRACT

Despite novel biological targets emerging at an impressive rate for anticancer therapy, antitubulin drugs remain the backbone of numerous oncological protocols and their efficacy has been demonstrated in a wide variety of adult and pediatric cancers. In the present contribution, we set to develop analogs of a potent but neglected antitubulin agent, TN-16, originally discovered via modification of tenuazonic acid (3-acetyl-5-sec-butyltetramic acid). To this extent, we developed a novel multicomponent reaction to prepare TN-16, and then we applied the same reaction for the synthesis of aza-analogs. In brief, we prepared a library of 62 novel compounds, and three of these retained nanomolar potencies. TN-16 and the active analogs are cytotoxic on cancer cell lines and, as expected from antitubulin agents, induce G2/M cell cycle arrest. These agents lead to a disruption of the microtubules and an increase in α-tubulin acetylation and affect in vitro polymerization, although they have a lesser effect in cellular tubulin polymerization assays.


Subject(s)
Antineoplastic Agents , Pyrrolidinones , Tubulin Modulators , Child , Humans , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Microtubules/drug effects , Structure-Activity Relationship , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology , Pyrrolidinones/chemical synthesis , Pyrrolidinones/chemistry , Pyrrolidinones/pharmacology
7.
Clin Transl Gastroenterol ; 13(7): e00510, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35905420

ABSTRACT

INTRODUCTION: The immune mechanisms underlying human autoimmune atrophic gastritis (AAG) are poorly understood. We sought to assess immune mucosal alterations in patients with AAG. METHODS: In 2017-2021, we collected gastric corpus biopsies from 24 patients with AAG (median age 62 years, interquartile range 56-67, 14 women), 26 age-matched and sex-matched healthy controls (HCs), and 14 patients with Helicobacter pylori infection (HP). We investigated the lamina propria mononuclear cell (LPMC) populations and the mucosal expression of thymic stromal lymphopoietin (TSLP) and nicotinamide phosphoribosyltransferase (NAMPT). Ex vivo cytokine production by organ culture biopsies, under different stimuli (short TSLP and zinc-l-carnosine), and the gastric vascular barrier through plasmalemma vesicle-associated protein-1 (PV1) were also assessed. RESULTS: In the subset of CD19+ LPMC, CD38+ cells (plasma cells) were significantly higher in AAG compared with HC. Ex vivo production of tumor necrosis factor (TNF)-α, interleukin (IL)-15, and transforming growth factor ß1 was significantly higher in AAG compared with HC. At immunofluorescence, both IL-7R and TSLP were more expressed in AAG compared with HC and HP, and short TSLP transcripts were significantly increased in AAG compared with HC. In the supernatants of AAG corpus mucosa, short TSLP significantly reduced TNF-α, while zinc-l-carnosine significantly reduced interferon-γ, TNF-α, IL-21, IL-6, and IL-15. NAMPT transcripts were significantly increased in AAG compared with HC. PV1 was almost absent in AAG, mildly expressed in HC, and overexpressed in HP. DISCUSSION: Plasma cells, proinflammatory cytokines, and altered gastric vascular barrier may play a major role in AAG. TSLP and NAMPT may represent potential therapeutic targets, while zinc-l-carnosine may dampen mucosal inflammation.


Subject(s)
Carnosine , Gastritis, Atrophic , Gastritis , Helicobacter Infections , Helicobacter pylori , Aged , Cytokines , Female , Gastritis/pathology , Gastritis, Atrophic/genetics , Gastritis, Atrophic/pathology , Helicobacter Infections/pathology , Helicobacter pylori/metabolism , Humans , Male , Middle Aged , Mucous Membrane/metabolism , Mucous Membrane/pathology , Tumor Necrosis Factor-alpha/metabolism , Zinc , Thymic Stromal Lymphopoietin
8.
iScience ; 25(4): 104147, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35402885

ABSTRACT

Nicotinamide phosphoribosyltransferase (NAMPT), alongside being a crucial enzyme in NAD synthesis, has been shown to be a secreted protein (eNAMPT), whose levels are increased in patients affected by immune-mediated disorders. Accordingly, preclinical studies have highlighted that eNAMPT participates in the pathogenesis of several inflammatory diseases. Herein, we analyzed the effects of eNAMPT on macrophage-driven inflammation. RNAseq analysis of peritoneal macrophages (PECs) demonstrates that eNAMPT triggers an M1-skewed transcriptional program, and this effect is not dependent on the enzymatic activity. Noteworthy, both in PECs and in human monocyte-derived macrophages, eNAMPT selectively boosts IFNγ-driven transcriptional activation via STAT1/3 phosphorylation. Importantly, the secretion of eNAMPT promotes the chemotactic recruitment of myeloid cells, therefore providing a potential positive feedback loop to foster inflammation. Last, we report that these events are independent of the activation of TLR4, the only eNAMPT receptor that has hitherto been recognized, prompting the knowledge that other receptors are involved.

9.
Signal Transduct Target Ther ; 7(1): 41, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136018

ABSTRACT

The term "circadian rhythms" describes endogenous oscillations with ca. 24-h period associated with the earth's daily rotation and light/dark cycle. Such rhythms reflect the existence of an intrinsic circadian clock that temporally orchestrates physiological processes to adapt the internal environment with the external cues. At the molecular level, the circadian clock consists of multiple sets of transcription factors resulting in autoregulatory transcription-translation feedback loops. Notably, in addition to their primary role as generator of circadian rhythm, the biological clock plays a key role in controlling physiological functions of almost all tissues and organs. It regulates several intracellular signaling pathways, ranging from cell proliferation, DNA damage repair and response, angiogenesis, metabolic and redox homeostasis, to inflammatory and immune response. In this review, we summarize findings showing the crosstalk between the circadian molecular clock and some key intracellular pathways, describing a scenario wherein their reciprocal regulation impinges upon several aspects of mammalian physiology. Moreover, based on evidence indicating that circadian rhythms can be challenged by environmental factors, social behaviors, as well as pre-existing pathological conditions, we discuss implications of circadian misalignment in human pathologies, such as cancer and inflammatory diseases. Accordingly, disruption of circadian rhythm has been reported to affect several physiological processes that are relevant to human diseases. Expanding our understanding of this field represents an intriguing and transversal medicine challenge in order to establish a circadian precision medicine.


Subject(s)
Circadian Clocks , Circadian Rhythm , Neoplasms , Precision Medicine , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/therapy
10.
Br J Pharmacol ; 179(12): 2813-2828, 2022 06.
Article in English | MEDLINE | ID: mdl-32726469

ABSTRACT

Ribosomes coordinate spatiotemporal control of gene expression, contributing to the acquisition and maintenance of cancer phenotype. The link between ribosomes and cancer is found in the roles of individual ribosomal proteins in tumorigenesis and cancer progression, including the ribosomal protein, receptor for activated C kinase 1 (RACK1). RACK1 regulates cancer cell invasion and is localized in spreading initiation centres, structural adhesion complexes containing RNA binding proteins and poly-adenylated mRNAs that suggest a local translation process. As RACK1 is a ribosomal protein directly involved in translation and in breast cancer progression, we propose a new molecular mechanism for breast cancer cell migration and invasion, which considers the molecular differences between epithelial and mesenchymal cell profiles in order to characterize and provide novel targets for therapeutic strategies. Hence, we provide an analysis on how ribosomes translate cancer progression with a final focus on the ribosomal protein RACK1 in breast cancer. LINKED ARTICLES: This article is part of a themed issue on New avenues in cancer prevention and treatment (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.12/issuetoc.


Subject(s)
Breast Neoplasms , Breast Neoplasms/metabolism , Female , Humans , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Receptors for Activated C Kinase/chemistry , Receptors for Activated C Kinase/genetics , Receptors for Activated C Kinase/metabolism , Ribosomal Proteins/genetics , Ribosomes/genetics , Ribosomes/metabolism
11.
Front Pharmacol ; 12: 758320, 2021.
Article in English | MEDLINE | ID: mdl-34880756

ABSTRACT

Tumour cells modify their cellular metabolism with the aim to sustain uncontrolled proliferation. Cancer cells necessitate adequate amounts of NAD and NADPH to support several enzymes that are usually overexpressed and/or overactivated. Nicotinamide adenine dinucleotide (NAD) is an essential cofactor and substrate of several NAD-consuming enzymes, such as PARPs and sirtuins, while NADPH is important in the regulation of the redox status in cells. The present review explores the rationale for targeting the key enzymes that maintain the cellular NAD/NADPH pool in colorectal cancer and the enzymes that consume or use NADP(H).

12.
Cells ; 10(11)2021 11 03.
Article in English | MEDLINE | ID: mdl-34831222

ABSTRACT

Cancer is one of the most common causes of death worldwide, and its development is a result of the complex interaction of genetic factors, environmental cues, and aging. Hormone-sensitive cancers depend on the action of one or more hormones for their development and progression. Sex steroids and corticosteroids can regulate different physiological functions, including metabolism, growth, and proliferation, through their interaction with specific nuclear receptors, that can transcriptionally regulate target genes via their genomic actions. Therefore, interference with hormones' activities, e.g., deregulation of their production and downstream pathways or the exposition to exogenous hormone-active substances such as endocrine-disrupting chemicals (EDCs), can affect the regulation of their correlated pathways and trigger the neoplastic transformation. Although nuclear receptors account for most hormone-related biologic effects and their slow genomic responses are well-studied, less-known membrane receptors are emerging for their ability to mediate steroid hormones effects through the activation of rapid non-genomic responses also involved in the development of hormone-sensitive cancers. This review aims to collect pre-clinical and clinical data on these extranuclear receptors not only to draw attention to their emerging role in cancer development and progression but also to highlight their dual role as tumor microenvironment players and potential candidate drug targets.


Subject(s)
Cell Membrane/metabolism , Hormones/metabolism , Neoplasms/metabolism , Receptors, Steroid/genetics , Animals , Humans , Models, Biological , Neoplasms/drug therapy , Receptors, Steroid/metabolism , Signal Transduction
13.
Oncogenesis ; 9(12): 105, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33311444

ABSTRACT

Recent data indicate that receptor for activated C kinase 1 (RACK1) is a putative prognostic marker and drug target in breast cancer (BC). High RACK1 expression is negatively associated with overall survival, as it seems to promote BC progression. In tumors, RACK1 expression is controlled by a complex balance between glucocorticoids and androgens. Given the fact that androgens and androgenic derivatives can inhibit BC cell proliferation and migration, the role of androgen signaling in regulating RACK1 transcription in mammary tumors is of pivotal interest. Here, we provide evidence that nandrolone (19-nortosterone) inhibits BC cell proliferation and migration by antagonizing the PI3K/Akt/NF-κB signaling pathway, which eventually results in RACK1 downregulation. We also show that nandrolone impairs the PI3K/Akt/NF-κB signaling pathway and decreases RACK1 expression via binding to the membrane-bound receptor, oxoeicosanoid receptor 1 (OXER1). High levels of OXER1 are observed in several BC cell lines and correlate with RACK1 expression and poor prognosis. Our data provide evidence on the role played by the OXER1-dependent intracellular pathway in BC progression and shed light on the mechanisms underlying membrane-dependent androgen effects on RACK1 regulation. Besides the mechanistic relevance, the results of the study are of interest from a translational prospective. In fact, they identify a new and actionable pathway to be used for the design of innovative and rational therapeutic strategies in the context of the personalized treatment of BC. In addition, they draw attention on nandrolone-based compounds that lack hormonal activity as potential anti-tumor agents.

14.
Biology (Basel) ; 9(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271839

ABSTRACT

The involvement of inflammation in cancer progression has been the subject of research for many years. Inflammatory milieu and immune response are associated with cancer progression and recurrence. In different types of tumors, growth and metastatic phenotype characterized by the epithelial mesenchymal transition (EMT) process, stemness, and angiogenesis, are increasingly associated with intrinsic or extrinsic inflammation. Among the inflammatory mediators, prostaglandin E2 (PGE2) supports epithelial tumor aggressiveness by several mechanisms, including growth promotion, escape from apoptosis, transactivation of tyrosine kinase growth factor receptors, and induction of angiogenesis. Moreover, PGE2 is an important player in the tumor microenvironment, where it suppresses antitumor immunity and regulates tumor immune evasion, leading to increased tumoral progression. In this review, we describe the current knowledge on the pro-tumoral activity of PGE2 focusing on its role in cancer progression and in the regulation of the tumor microenvironment.

15.
Front Pharmacol ; 11: 656, 2020.
Article in English | MEDLINE | ID: mdl-32477131

ABSTRACT

Nicotinamide adenine dinucleotide (NAD) is a cofactor of many enzymatic reactions as well as being a substrate for a number of NAD-consuming enzymes (e.g., PARPS, sirtuins, etc). NAD can be synthesized de novo starting from tryptophan, nicotinamide, nicotinic acid, or nicotinamide riboside from the diet. On the other hand, the nicotinamide that is liberated by NAD-consuming enzymes can be salvaged to re-form NAD. In this former instance, nicotinamide phosphoribosyltransferase (NAMPT) is the bottleneck enzyme. In the many cells in which the salvage pathway is predominant, NAMPT, therefore, represents an important controller of intracellular NAD concentrations, and as a consequence of energy metabolism. It is, therefore, not surprising that NAMPT is over expressed by tumoral cells, which take advantage from this to sustain growth rate and tumor progression. This has led to the initiation of numerous medicinal chemistry programs to develop NAMPT inhibitors in the context of oncology. More recently, however, it has been shown that NAMPT inhibitors do not solely target the tumor but also have an effect on the immune system. To add complexity, this enzyme can also be secreted by cells, and in the extracellular space it acts as a cytokine mainly through the activation of Toll like Receptor 4 (TLR4), although it has not been clarified yet if this is the only receptor responsible for its actions. While specific small molecules have been developed only against the intracellular form of NAMPT, growing evidences sustain the possibility to target the extracellular form. In this contribution, the most recent evidences on the medicinal chemistry of NAMPT will be reviewed, together with the key elements that sustain the hypothesis of NAMPT targeting and the drawbacks so far encountered.

16.
J Mol Med (Berl) ; 98(4): 595-612, 2020 04.
Article in English | MEDLINE | ID: mdl-32338310

ABSTRACT

Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) is increased in inflammatory bowel disease (IBD) patients, and its serum levels correlate with a worse prognosis. In the present manuscript, we show that eNAMPT serum levels are increased in IBD patients that fail to respond to anti-TNFα therapy (infliximab or adalimumab) and that its levels drop in patients that are responsive to these therapies, with values comparable with healthy subjects. Furthermore, eNAMPT administration in dinitrobenzene sulfonic acid (DNBS)-treated mice exacerbates the symptoms of colitis, suggesting a causative role of this protein in IBD. To determine the druggability of this cytokine, we developed a novel monoclonal antibody (C269) that neutralizes in vitro the cytokine-like action of eNAMPT and that reduces its serum levels in rodents. Of note, this newly generated antibody is able to significantly reduce acute and chronic colitis in both DNBS- and dextran sulfate sodium (DSS)-induced colitis. Importantly, C269 ameliorates the symptoms by reducing pro-inflammatory cytokines. Specifically, in the lamina propria, a reduced number of inflammatory monocytes, neutrophils, Th1, and cytotoxic T lymphocytes are found upon C269 treatment. Our data demonstrate that eNAMPT participates in IBD and, more importantly, that eNAMPT-neutralizing antibodies are endowed with a therapeutic potential in IBD. KEY MESSAGES: What are the new findings? Higher serum eNAMPT levels in IBD patients might decrease response to anti-TNF therapy. The cytokine-like activity of eNAMPT may be neutralized with a monoclonal antibody. Neutralization of eNAMPT ameliorates acute and chronic experimental colitis. Neutralization of eNAMPT limits the expression of IBD inflammatory signature. Neutralization of eNAMPT impairs immune cell infiltration in lamina propria.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Colitis/etiology , Cytokines/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Animals , Biomarkers , Colitis/drug therapy , Colitis/metabolism , Colitis/pathology , Cytokines/metabolism , Disease Models, Animal , Extracellular Space/metabolism , Inflammation Mediators/metabolism , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Mice , Mucous Membrane/immunology , Mucous Membrane/metabolism
17.
Data Brief ; 28: 105034, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32226807

ABSTRACT

In the related research article, entitled "Identification of novel triazole-based nicotinamide phosphoribosyltransferase (NAMPT) inhibitors endowed with antiproliferative and antiinflammatory activity" [1], we reported the in vitro hepatic metabolism data for compounds 30c, 48b, and 31b (here named as E5, A6, and T1), in comparison with the reference compounds GPP78 and FK866 [1-3]. In this article, we retrieved the available data about the hepatic microsomal stability and metabolites structural characterization of the entire library of triazole-based NAMPT inhibitors, also implementing the given information with data regarding aqueous solubility and CYP inhibition. Compounds are divided in subclasses based on the hydrolytic resistant groups replacing the amide function of GPP78 [1, 2].

18.
J Med Chem ; 63(6): 3047-3065, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32150677

ABSTRACT

In this study, a successful medicinal chemistry campaign that exploited virtual, biophysical, and biological investigations led to the identification of a novel class of IDO1 inhibitors based on a benzimidazole substructure. This family of compounds is endowed with an extensive bonding network in the protein active site, including the interaction with pocket C, a region not commonly exploited by previously reported IDO1 inhibitors. The tight packing of selected compounds within the enzyme contributes to the strong binding interaction with IDO1, to the inhibitory potency at the low nanomolar level in several tumoral settings, and to the selectivity toward IDO1 over TDO and CYPs. Notably, a significant reduction of L-Kyn levels in plasma, together with a potent effect on abrogating immunosuppressive properties of MDSC-like cells isolated from patients affected by pancreatic ductal adenocarcinoma, was observed, pointing to this class of molecules as a valuable template for boosting the antitumor immune system.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Animals , Benzimidazoles/blood , Cell Line, Tumor , Cells, Cultured , Enzyme Inhibitors/blood , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Male , Mice , Molecular Docking Simulation , Structure-Activity Relationship
19.
Cells ; 9(2)2020 02 21.
Article in English | MEDLINE | ID: mdl-32098202

ABSTRACT

(1) Background: Extracellular nicotinamide phosphoribosyltrasferase (eNAMPT) is released by various cell types with pro-tumoral and pro-inflammatory properties. In cancer, eNAMPT regulates tumor growth through the activation of intracellular pathways, suggesting that it acts through a putative receptor, although its nature is still elusive. It has been shown, using surface plasma resonance, that eNAMPT binds to the C-C chemokine receptor type 5 (CCR5), although the physiological meaning of this finding is unknown. The aim of the present work was to characterize the pharmacodynamics of eNAMPT on CCR5. (2) Methods: HeLa CCR5-overexpressing stable cell line and B16 melanoma cells were used. We focused on some phenotypic effects of CCR5 activation, such as calcium release and migration, to evaluate eNAMPT actions on this receptor. (3) Results: eNAMPT did not induce ERK activation or cytosolic Ca2+-rises alone. Furthermore, eNAMPT prevents CCR5 internalization mediated by Rantes. eNAMPT pretreatment inhibits CCR5-mediated PKC activation and Rantes-dependent calcium signaling. The effect of eNAMPT on CCR5 was specific, as the responses to ATP and carbachol were unaffected. This was strengthened by the observation that eNAMPT inhibited Rantes-induced Ca2+-rises and Rantes-induced migration in a melanoma cell line. (4) Conclusions: Our work shows that eNAMPT binds to CCR5 and acts as a natural antagonist of this receptor.


Subject(s)
Cytokines/metabolism , Melanoma/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Receptors, CCR5/metabolism , Animals , Calcium/metabolism , Calcium Signaling/genetics , Cell Movement/genetics , Chemokine CCL5/metabolism , HEK293 Cells , HeLa Cells , Humans , Melanoma/pathology , Mice , Protein Binding/genetics , Protein Kinase C/metabolism , Receptors, CCR5/genetics , Recombinant Proteins/metabolism , Signal Transduction/genetics , Transfection
20.
J Biol Chem ; 295(11): 3635-3651, 2020 03 13.
Article in English | MEDLINE | ID: mdl-31988240

ABSTRACT

All cells require sustained intracellular energy flux, which is driven by redox chemistry at the subcellular level. NAD+, its phosphorylated variant NAD(P)+, and its reduced forms NAD(P)/NAD(P)H are all redox cofactors with key roles in energy metabolism and are substrates for several NAD-consuming enzymes (e.g. poly(ADP-ribose) polymerases, sirtuins, and others). The nicotinamide salvage pathway, constituted by nicotinamide mononucleotide adenylyltransferase (NMNAT) and nicotinamide phosphoribosyltransferase (NAMPT), mainly replenishes NAD+ in eukaryotes. However, unlike NMNAT1, NAMPT is not known to be a nuclear protein, prompting the question of how the nuclear NAD+ pool is maintained and how it is replenished upon NAD+ consumption. In the present work, using human and murine cells; immunoprecipitation, pulldown, and surface plasmon resonance assays; and immunofluorescence, small-angle X-ray scattering, and MS-based analyses, we report that GAPDH and NAMPT form a stable complex that is essential for nuclear translocation of NAMPT. This translocation furnishes NMN to replenish NAD+ to compensate for the activation of NAD-consuming enzymes by stressful stimuli induced by exposure to H2O2 or S-nitrosoglutathione and DNA damage inducers. These results indicate that by forming a complex with GAPDH, NAMPT can translocate to the nucleus and thereby sustain the stress-induced NMN/NAD+ salvage pathway.


Subject(s)
Cell Nucleus/enzymology , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , NAD/metabolism , Nicotinamide Mononucleotide/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Stress, Physiological , Animals , Cell Line, Tumor , HeLa Cells , Humans , Kinetics , Melanoma, Experimental/enzymology , Melanoma, Experimental/pathology , Mice , NIH 3T3 Cells , Nicotinamide Mononucleotide/chemistry , Nicotinamide Phosphoribosyltransferase/chemistry , Protein Binding , Protein Multimerization , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...