Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Plant Physiol Biochem ; 46(4): 506-16, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18395461

ABSTRACT

The enzyme myrosinase (thioglucoside glucohydrolase, EC 3.2.1.147, formerly EC 3.2.3.1) catalyzes the hydrolysis of glucosinolates after tissue damage in plants of the order Brassicales. The various myrosinase isoforms occur either as free soluble dimers or as insoluble complexes. We propose a reliable method for determination of both soluble and insoluble myrosinase activity concentrations in partially purified plant extracts. The procedure requires the removal of endogenous glucosinolates through ion-exchange columns previous to enzyme measurements. Myrosinase activity was assayed in continuous mode by photometric quantification of the released glucose using glucose-oxidase with peroxidase and colorimetric indicators. The measurement of the colored product at 492nm has a favorable signal to noise ratio both in clear extract solutions (free dimers) and in turbid pellet suspensions (insoluble complexes). No interferences by ascorbic acid were found in continuous analyses. With the recommended sample preparation methods and assay conditions potential activities in damaged plant tissues can be characterized which are involved in plant defense mechanisms.


Subject(s)
Brassica napus/enzymology , Glycoside Hydrolases/chemistry , Plant Proteins/chemistry , Sinapis/enzymology , Glucosinolates/metabolism , Glycoside Hydrolases/analysis , Plant Extracts/analysis , Plant Extracts/chemistry , Plant Proteins/analysis
3.
Plant Signal Behav ; 3(5): 311-3, 2008 May.
Article in English | MEDLINE | ID: mdl-19841655

ABSTRACT

Plant defenses are expected to be negatively correlated with plant growth, development and reproduction. In a recent study, we investigated the specificity of induction responses of chemical defenses in the Brassicaceae Sinapis alba.1 It was shown that glucosinolate levels and myrosinase activities increased to different degrees after 24-hours-feeding by a specialist or generalist herbivore or mechanical wounding. Here, we present the specific influences of these treatments on organ biomasses which were recorded as a measure of growth. Directly after the treatments, organ biomasses were reduced locally and systemically by herbivore feeding, but not by mechanical wounding compared to control plants. Induction of glucosinolates, which increased in all treatments, is thus not necessarily expressed as cost in terms of reduced growth in S. alba. No significant long-term differences in plant development between herbivore treated and control plants were found. Thus, tissue loss and increased investments in chemical defenses could be compensated over time, but compensation patterns depended on the inducing agent. Furthermore, herbivore treatments resulted in an increased mechanical defense, measured as abaxial trichome densities. Plants respond highly dynamic with regard to defense and growth allocation and due to different inductors.

4.
J Chem Ecol ; 33(8): 1582-97, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17587140

ABSTRACT

The glucosinolate-myrosinase system of Brassicaceae is known to hold a defensive function in both a constitutive and an inducible fashion. Glucosinolates are sulfur- and nitrogen-containing metabolites that are hydrolyzed upon tissue disruption by myrosinase enzymes. The resulting products are toxic for most herbivores. Nevertheless, some insects evolved detoxification mechanisms that enable them to feed exclusively on Brassicaceae. Induction of plant chemical defenses that deter or poison generalists might be ineffective against adapted specialists. We investigated the specificity of short-term induction patterns of chemical defenses in Sinapis alba damaged by a glucosinolate-sequestering specialist herbivore (turnip sawfly, Athalia rosae), a generalist herbivore (fall armyworm, Spodoptera frugiperda), or mechanical wounding (cork borer), and their effects on the behavior of A. rosae. After 24 hr of damage to young leaves, local as well as systemic changes in glucosinolate and myrosinase levels were analyzed. The intensity of the resulting changes was highest in damaged leaves. Induction responses in S. alba were dependent upon the attacking herbivore and were distinct from a mere wound response. Specialist feeding and mechanical wounding evoked up to threefold increases in levels of both parts of the glucosinolate-myrosinase system, whereas generalist feeding induced up to twofold increases in glucosinolate levels only. The majority of constitutive and induced myrosinase activity was found in the insoluble fractions. Possible consequences for the plant-specialist interaction were examined in behavioral tests with larvae and adult females of A. rosae on induced S. alba plants. Larval feeding and adult oviposition patterns were not modulated in relation to plant treatment. Thus, specificity was found in S. alba responses in relation to the inducing agent, but it was not present in return in the effects on the behavior of an adapted herbivore.


Subject(s)
Brassicaceae/parasitology , Diptera/physiology , Feeding Behavior , Spodoptera/physiology , Animals , Behavior, Animal , Glucosinolates/metabolism , Glycoside Hydrolases/metabolism , Hydrolysis , Plant Leaves/enzymology , Plant Leaves/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...