Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 87: 190-196, 2018 11.
Article in English | MEDLINE | ID: mdl-30077078

ABSTRACT

Finite element models (FEM) derived from qCT-scans were developed as a clinical tool to evaluate vertebral strength. However, the high dose, time and cost of qCT-scanner are limitations for routine osteoporotic diagnosis. A new approach considers using bi-planar dual energy (BP2E) X-rays absorptiometry to build vertebral FEM using synchronized sagittal and frontal plane radiographs. The purpose of this study was to compare the performance of the areal bone mineral density (aBMD) measured from DXA, qCT-based FEM and BP2E-based FEM in predicting experimental vertebral strength. Twenty eight vertebrae from eleven lumbar spine segments were imaged with qCT, DXA and BP2E X-rays before destructively tested in anterior compression. FEM were built based on qCT and BP2E images for each vertebra. Subject-specific FEM were built based on 1) the BP2E images using 3D reconstruction and volumetric BMD distribution estimation and 2) the qCT scans using slice by slice segmentation and voxel based calibration. Linear regression analysis was performed to find the best predictor for experimental vertebral strength (Fexpe); aBMD, modeled vertebral strength and vertebral stiffness. Areal BMD was moderately correlated with Fexpe (R2 = 0.74). FEM calculations of vertebral strength were highly to strongly correlated with Fexpe (R2 = 0.84, p < 0.001 for BP2E model and R2 = 0.95, p < 0.001 for qCT model). The results of this study suggest that aBMD accounted for only 74% of Fexpe variability while FE models accounted for at least 84%. For anterior compressive loading on isolated vertebral bodies, simplistic loading condition aimed to replicate anterior wedge fractures, both FEM were good predictors of Fexpe. Therefore FEM based on BP2E X-rays absorptiometry could be a good alternative to replace qCT-based models in the prediction of vertebral strength. However future work should investigate the performance of the BP2E-based model in vivo in discriminating patients with and without vertebral fracture in a prospective study.


Subject(s)
Absorptiometry, Photon , Compressive Strength , Finite Element Analysis , Lumbar Vertebrae/physiology , Aged , Aged, 80 and over , Biomechanical Phenomena , Bone Density , Female , Humans , Lumbar Vertebrae/diagnostic imaging , Male , Materials Testing , Middle Aged , Tomography, X-Ray Computed
2.
Comput Methods Biomech Biomed Engin ; 21(5): 408-412, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29969279

ABSTRACT

Several Finite Element (FE) models of the pelvis have been developed to comprehensively assess the onset of pathologies and for clinical and industrial applications. However, because of the difficulties associated with the creation of subject-specific FE mesh from CT scan and MR images, most of the existing models rely on the data of one given individual. Moreover, although several fast and robust methods have been developed for automatically generating tetrahedral meshes of arbitrary geometries, hexahedral meshes are still preferred today because of their distinct advantages but their generation remains an open challenge. Recently, approaches have been proposed for fast 3D reconstruction of bones based on X-ray imaging. In this study, we adapted such an approach for the fast and automatic generation of all-hexahedral subject-specific FE models of the pelvis based on the elastic registration of a generic mesh to the subject-specific target in conjunction with element regularity and quality correction. The technique was successfully tested on a database of 120 3D reconstructions of pelvises from biplanar X-ray images. For each patient, a full hexahedral subject-specific FE mesh was generated with an accurate surface representation.


Subject(s)
Finite Element Analysis , Pelvis/diagnostic imaging , Tomography, X-Ray Computed , Adult , Aged , Computer Simulation , Female , Humans , Male , Middle Aged , Young Adult
3.
J Biomech ; 48(16): 4322-6, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26592437

ABSTRACT

The aim of this study was to propose a novel method for reconstructing the external body envelope from the low dose biplanar X-rays of a person. The 3D body envelope was obtained by deforming a template to match the surface profiles in two X-rays images in three successive steps: global morphing to adopt the position of a person and scale the template׳s body segments, followed by a gross deformation and a fine deformation using two sets of pre-defined control points. To evaluate the method, a biplanar X-ray acquisition was obtained from head to foot for 12 volunteers in a standing posture. Up to 172 radio-opaque skin markers were attached to the body surface and used as reference positions. Each envelope was reconstructed three times by three operators. Results showed a bias lower than 7mm and a confidence interval (95%) of reproducibility lower than 6mm for all body parts, comparable to other existing methods matching a template onto stereographic photographs. The proposed method offers the possibility of reconstructing body shape in addition to the skeleton using a low dose biplanar X-rays system.


Subject(s)
Imaging, Three-Dimensional/methods , Whole Body Imaging/methods , Adult , Female , Humans , Male , Radiography , Reference Values , Reproducibility of Results , Young Adult
4.
Spine (Phila Pa 1976) ; 37(3): E156-62, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22290213

ABSTRACT

STUDY DESIGN: A finite element analysis on osteoporotic vertebrae. OBJECTIVE: This study aims to validate subject-specific finite element models (FEMs) derived from a low-dose imaging system (EOS, Biospace Med, France) for the prediction of vertebral strength. The vertebrae are submitted to an eccentric compression force leading to compression and anterior bending. SUMMARY OF BACKGROUND DATA: Given the aging population, osteoporosis and vertebral fractures are a major public health issue. A low bone mineral density (BMD) does not always explain incident fractures, and multifactorial analyses are required. In this context, FEMs based on quantitative computed tomography (QCT) have been proposed to predict vertebral strength in vitro or quantify effects of treatments. However, the clinical use of such a model for the in vivo follow-up of the whole spine is limited by the high-radiation dose induced by QCT and the lying position, which does not allow postural assessment with the same modality. METHODS: Fourteen vertebrae were modeled using a parametric meshing method. The mesh was subject-specific using geometric parameters computed on the 3-dimensional (3D) reconstructions obtained from the EOS biplanar radiographs. The contribution of cortical bone was taken into account by modeling a cortico-cancellous shell whose properties were derived from experimental data. The effect of subject-specific bone Young's moduli derived from EOS vertebral areal BMD was quantified. The 3D position of the point-of-load application and the 3D orientation of the force was faithfully reproduced in the model to compare the predicted strength and experimental strength under the same loading conditions. RESULTS: The relative error of prediction decreased from 43% to 16% (2.5 times) when subject-specific mechanical properties, derived from EOS areal BMD, were implemented in the FEM compared with averaged material properties. The resulting subject-specific FEMs predicted vertebral strength with a level of significance close to the QCT-based models (r adjusted = 0.79, root mean square error = 367 N). CONCLUSION: This work underlines the potential of low-dose biplanar x-ray devices to make subject-specific FEMs for prediction of vertebral strength.


Subject(s)
Finite Element Analysis , Lumbar Vertebrae/diagnostic imaging , Models, Biological , Osteoporosis/diagnostic imaging , Thoracic Vertebrae/diagnostic imaging , Tomography, X-Ray Computed/methods , Aged , Aged, 80 and over , Cadaver , Female , Humans , Imaging, Three-Dimensional/methods , Lumbar Vertebrae/physiology , Male , Osteoporosis/physiopathology , Predictive Value of Tests , Radiation Dosage , Thoracic Vertebrae/physiology
5.
Med Biol Eng Comput ; 49(12): 1355-61, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21927822

ABSTRACT

Patient-specific modeling could help in predicting vertebral osteoporotic fracture. The accuracy requirement for input data available in clinical routine is related to the model sensitivity. The objective of this study is to assess the relative impact of material properties and of loading conditions on vertebral strength using a finite element model. Fourteen subject-specific vertebral finite element models were used to investigate the effect of material properties and loading conditions. A design of experiment was set to study three parameters: Young's moduli of trabecular bone and cortico-trabecular bone (outer 3 mm of the vertebra), and load location. Cortico-trabecular bone modulus variation from 270 to 478 MPa made fracture load vary from 22 to 51%, depending on other parameters. Trabecular bone modulus variation from 115 to 258 MPa made fracture load vary from 11 to 43%. Displacing load location by 1 cm resulted in a mean decrease of 48-60% of the fracture load. Anterior bending induced strain concentration in vertebral anterior wall. Material properties of both type of bone have about the same effect. Load location is the most sensitive. Effort should be made to take into account patients' specific load distribution regarding its sagittal balance, in addition to bone properties.


Subject(s)
Models, Biological , Osteoporotic Fractures/physiopathology , Spinal Fractures/physiopathology , Aged , Aged, 80 and over , Finite Element Analysis , Humans , Middle Aged , Osteoporotic Fractures/diagnostic imaging , Spinal Fractures/diagnostic imaging , Tomography, X-Ray Computed , Weight-Bearing/physiology
SELECTION OF CITATIONS
SEARCH DETAIL