Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
JPEN J Parenter Enteral Nutr ; 48(2): 174-183, 2024 02.
Article in English | MEDLINE | ID: mdl-37991279

ABSTRACT

INTRODUCTION: Reported outcomes for parenteral nutrition (PN)-related complications in older adult patients with acute intestinal failure who are receiving PN in the acute hospital setting are limited. Our study aims to compare PN-related complications between older and younger adult patients. METHODS: A retrospective descriptive study of inpatients who were administered PN from January 1, 2019, to December 31, 2019, was performed. Patients were categorized into older (≥65 years old) and younger (<65 years old) adult groups. RESULTS: Two hundred thirty-five patients were included. There were 103 patients in the older adult group (mean age: 73.9 [SD: 6.9] years) and 132 patients in the younger adult group (mean age: 52.4 [SD: 12.5] years). There was a significantly higher Charlson Comorbidity Index score and lower Karnofsky score in the older adult group. The older adult group received significantly lower total energy (20.8 [SD: 7.8] vs 22.8 [SD: 6.3] kcal/kg/day), dextrose (3.1 [SD: 1.4] vs 3.6 [SD: 1.4] g/kg/day), and protein (1.1 [SD: 0.4] vs 1.2 [SD: 0.3] g/kg/day) than the younger group received. The mean length of stay was significantly shorter in the older adult group (35.9 [SD: 21.3] vs 59.8 [SD: 55.3]; P < 0.05). There was no significant difference in PN-related complications and clinical outcomes (catheter-related bloodstream infections, hypoglycemia or hyperglycemia, fluid overload, or inpatient mortality) between the two groups. CONCLUSION: Despite more comorbidities in the older adult, the usage of PN in older adult patients with acute intestinal failure was associated with neither an increased rate of PN-related complications nor worse clinical outcomes when compared with that of younger patients.


Subject(s)
Hyperglycemia , Intestinal Failure , Humans , Aged , Middle Aged , Cohort Studies , Retrospective Studies , Parenteral Nutrition/adverse effects , Hyperglycemia/etiology
2.
Arch Toxicol ; 97(4): 991-999, 2023 04.
Article in English | MEDLINE | ID: mdl-36800004

ABSTRACT

The mode of action (MoA) of the 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicides in mammals is well described and is generally accepted to be due to a build-up of excess systemic tyrosine which is associated with the range of adverse effects reported in laboratory animals. What is less well accepted is the basis for the marked difference in the effects of HPPD inhibitors that has been observed across experimental species and humans, where some species show significant toxicities whereas in other species exposure causes few effects. The activity of the catabolic enzyme tyrosine aminotransferase (TAT) varies across species including humans and it is hypothesized that this primarily accounts for the different levels of tyrosinemia observed between species and leads to the subsequent differences in toxicity. The previously reported activities of TAT in different species showed large variation, were inconsistent, have methodological uncertainties and could lead to a reasonable challenge to the scientific basis for the species difference in response. To provide clarity, a new method was developed for the simultaneous and systematic measurement of TAT in vitro using robust methodologies in a range of mammalian species including human. The results obtained showed general correlation between high TAT activity and low in vivo toxicity when using a model based on hepatic cytosol and a very convincing correlation when using a primary hepatocyte model. These data fully support the role of TAT in explaining the species differences in toxicity. Moreover, this information should give greater confidence in selecting the most appropriate animal model (the mouse) for human health risk assessment and for key classification and labeling decision-making.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Herbicides , Humans , Animals , Mice , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , 4-Hydroxyphenylpyruvate Dioxygenase/pharmacology , Species Specificity , Tyrosine/pharmacology , Models, Animal , Liver , Enzyme Inhibitors/pharmacology , Herbicides/toxicity , Mammals/metabolism
3.
Toxicol Appl Pharmacol ; 417: 115463, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33631232

ABSTRACT

By extending our Paraquat (PQ) work to include primates we have implemented a modelling and simulation strategy that has enabled PQ pharmacokinetic data to be integrated into a single physiologically based pharmacokinetic (PBPK) model that enables more confident extrapolation to humans. Because available data suggested there might be differences in PQ kinetics between primates and non-primates, a radiolabelled study was conducted to characterize pharmacokinetics and excretion in Cynomolgus monkeys. Following single intravenous doses of 0.01 or 0.1 mg paraquat dichloride/kg bw, plasma PQ concentration-time profiles were dose-proportional. Excretion up to 48 h (predominantly urinary) was 82.9%, with ca. 10% remaining unexcreted. In vitro blood binding was similar across Cynomolgus monkeys, humans and rat. Our PBPK model for the rat, mouse and dog, employing a single set of PQ-specific parameters, was scaled to Cynomolgus monkeys and well represented the measured plasma concentration-time profiles over 14 days. Addition of a cartilage compartment to the model better captured the percent remaining in the monkeys at 48 h, whilst having negligible effect on model predictions for the other species. The PBPK model performed well for all four species, demonstrating there is little difference in PQ kinetics between non-primates and primates enabling a more confident extrapolation to humans. Scaling of the PBPK model to humans, with addition of a human-specific dermal submodel based on in vitro human dermal absorption data, provides a valuable tool that could be employed in defining internal dosimetry to complement human health risk assessments.


Subject(s)
Herbicides/pharmacokinetics , Models, Biological , Paraquat/pharmacokinetics , Animals , Computer Simulation , Herbicides/administration & dosage , Herbicides/blood , Herbicides/toxicity , Humans , Infusions, Intravenous , Intestinal Elimination , Macaca fascicularis , Paraquat/administration & dosage , Paraquat/blood , Paraquat/toxicity , Rats , Renal Elimination , Risk Assessment , Skin Absorption , Species Specificity , Tissue Distribution , Toxicokinetics
4.
Toxicol Appl Pharmacol ; 417: 115462, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33631233

ABSTRACT

Paraquat dichloride (PQ) is a non-selective herbicide which has been the subject of numerous toxicology studies over more than 50 years. This paper describes the development of a physiologically-based pharmacokinetic (PBPK) model of PQ kinetics for the rat, mouse and dog, firstly to aid the interpretation of studies in which no kinetic measurements were made, and secondly to enable the future extension of the model to humans. Existing pharmacokinetic data were used to develop a model for the rat and mouse. Simulations with this preliminary model were then used to identify key data gaps and to design a new blood binding study to reduce uncertainty in critical aspects of the model. The new data provided evidence to support the model structure, and its predictive performance was then assessed against dog and rat datasets not used in model development. The PQ-specific model parameters are the same for all three species, with only the physiological parameters varying between species. This consistency across species provides a strong basis for extrapolation to other species, as demonstrated here for the dog. The model enables a wide range of PQ data to be linked together to provide a broad understanding of PQ pharmacokinetics in rodents and the dog, showing that the key aspects of PQ kinetics in these species are understood and adequately encapsulated within the model.


Subject(s)
Herbicides/pharmacokinetics , Models, Biological , Paraquat/pharmacokinetics , Animals , Computer Simulation , Dogs , Herbicides/blood , Herbicides/toxicity , Intestinal Elimination , Mice , Paraquat/blood , Paraquat/toxicity , Protein Binding , Rats , Renal Elimination , Risk Assessment , Species Specificity , Tissue Distribution , Toxicokinetics
6.
PLoS One ; 11(10): e0164094, 2016.
Article in English | MEDLINE | ID: mdl-27788145

ABSTRACT

The neurotoxicity of paraquat dichloride (PQ) was assessed in two inbred strains of 9- or 16-week old male C57BL/6 mice housed in two different laboratories and compared to the effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). PQ was administered by intraperitoneal injections; either once (20 mg/kg) or twice (10 mg/kg) weekly for 3 weeks, while MPTP-HCl was injected 4 times on a single day (20 mg/kg/dose). Brains were collected 8, 16, 24, 48, 96 or 168 hours after the last PQ treatment, and 48 or 168 hours after MPTP treatment. Dopamine neurons in the substantia nigra pars compacta (SNpc) were identified by antibodies to tyrosine hydroxylase (TH+) and microglia were identified using Iba-1 immunoreactivity. The total number of TH+ neurons and the number of resting and activated microglia in the SNpc at 168 hours after the last dose were estimated using model- or design-based stereology, with investigators blinded to treatment. In a further analysis, a pathologist, also blinded to treatment, evaluated the SNpc and/or striatum for loss of TH+ neurons (SNpc) or terminals (striatum), cell death (as indicated by amino cupric silver uptake, TUNEL and/or caspase 3 staining) and neuroinflammation (as indicated by Iba-1 and/or GFAP staining). PQ, administered either once or twice weekly to 9- or 16-week old mice from two suppliers, had no effect on the number of TH+ neurons or microglia in the SNpc, as assessed by two groups, each blinded to treatment, using different stereological methods. PQ did not induce neuronal cell loss or degeneration in the SNpc or striatum. Additionally, there was no evidence of apoptosis, microgliosis or astrogliosis. In MPTP-treated mice, the number of TH+ neurons in the SNpc was significantly decreased and the number of activated microglia increased. Histopathological assessment found degenerating neurons/terminals in the SNpc and striatum but no evidence of apoptotic cell death. MPTP activated microglia in the SNpc and increased the number of astrocytes in the SNpc and striatum.


Subject(s)
Dopaminergic Neurons/drug effects , MPTP Poisoning/pathology , Microglia/drug effects , Paraquat/toxicity , Pars Compacta/cytology , Animals , Body Weight/drug effects , Cell Count , Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Eating/drug effects , Male , Mice , Mice, Inbred C57BL , Microglia/cytology , Microglia/pathology , Pars Compacta/pathology , Survival Analysis , Tyrosine 3-Monooxygenase/metabolism
8.
Regul Toxicol Pharmacol ; 75: 81-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26683030

ABSTRACT

Male and female C57BL/6J mice were administered diquat dibromide (DQ∙Br2) in their diets at concentrations of 0 (control), 12.5 and 62.5 ppm for 13 weeks to assess the potential effects of DQ on the nigrostriatal dopaminergic system. Achieved dose levels at 62.5 ppm were 6.4 and 7.6 mg DQ (ion)/kg bw/day for males and females, respectively. A separate group of mice was administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) ip as a positive control. The comparative effects of DQ and MPTP on the substantia nigra pars compacta (SNpc) and/or striatum were assessed using neurochemical, neuropathological and stereological endpoints. Morphological and stereological assessments were performed by investigators who were "blinded" to dose group. DQ had no effect on striatal dopamine concentration or dopamine turnover. There was no evidence of neuronal degeneration, astrocytic or microglial activation, or a reduction in the number of tyrosine hydroxylase positive (TH(+)) neurons in the SNpc or neuronal processes in the striatum of DQ-treated mice. These results are consistent with the rapid clearance of DQ from the brain following a single dose of radiolabeled DQ. In contrast, MPTP-treated mice exhibited decreased striatal dopamine concentration, reduced numbers of TH(+) neurons in the SNpc, and neuropathological changes, including neuronal necrosis, as well as astrocytic and microglial activation in the striatum and SNpc.


Subject(s)
Brain/drug effects , Diquat/toxicity , Herbicides/toxicity , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Brain/cytology , Brain/metabolism , Diet , Diquat/blood , Diquat/pharmacokinetics , Dopamine/metabolism , Dopaminergic Neurons/cytology , Dopaminergic Neurons/drug effects , Female , Herbicides/blood , Herbicides/pharmacokinetics , Homovanillic Acid/metabolism , Male , Mice, Inbred C57BL , Toxicity Tests, Subchronic
9.
Regul Toxicol Pharmacol ; 68(2): 250-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24389362

ABSTRACT

Several investigations have reported that mice administered paraquat dichloride (PQ·Cl2) by intraperitoneal injection exhibit a loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). In this study, male and female C57BL/6J mice were administered PQ·Cl2 in the diet at concentrations of 0 (control), 10, and 50ppm for a duration of 13weeks. A separate group of mice were administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) during week 12 as positive controls to produce a loss of dopaminergic neurons in the SNpc. The comparative effects of PQ and MPTP on the SNpc and/or striatum were assessed using neurochemical, neuropathological, and stereological endpoints. Morphological and stereological assessments were performed by investigators 'blinded' to the origin of the tissue. Neither dose of PQ·Cl2 (10 or 50 ppm in the diet) caused a loss of striatal dopamine or dopamine metabolite concentrations in the brains of mice. Pathological assessments of the SNpc and striatum showed no evidence of neuronal degeneration or astrocytic/microglial activation. Furthermore, the number of tyrosine hydroxylase-positive (TH(+)) neurons in the SNpc was not reduced in PQ-treated mice. In contrast, MPTP caused a decrease in striatal dopamine concentration, a reduction in TH(+) neurons in the SNpc, and significant pathological changes including astrocytic and microglial activation in the striatum and SNpc. The MPTP-induced effects were greater in males than in females. It is concluded that 13weeks of continuous dietary exposure of C57BL/6J mice to 50ppm PQ·Cl2 (equivalent to 10.2 and 15.6mg PQ ion/kg body weight/day for males and females, respectively) does not result in the loss of, or damage to, dopaminergic neurons in the SNpc.


Subject(s)
Dopamine/metabolism , Dopaminergic Neurons/drug effects , Herbicides/toxicity , Paraquat/toxicity , Animals , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dose-Response Relationship, Drug , Female , Herbicides/administration & dosage , MPTP Poisoning/pathology , Male , Mice , Mice, Inbred C57BL , Paraquat/administration & dosage , Sex Factors , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism
10.
Neurotoxicology ; 37: 1-14, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23523781

ABSTRACT

The pharmacokinetics and neurotoxicity of paraquat dichloride (PQ) were assessed following once weekly administration to C57BL/6J male mice by intraperitoneal injection for 1, 2 or 3 weeks at doses of 10, 15 or 25 mg/kg/week. Approximately 0.3% of the administered dose was taken up by the brain and was slowly eliminated, with a half-life of approximately 3 weeks. PQ did not alter the concentration of dopamine (DA), homovanillic acid (HVA) or 3,4-dihydroxyphenylacetic acid (DOPAC), or increase dopamine turnover in the striatum. There was inconsistent stereological evidence of a loss of DA neurons, as identified by chromogenic or fluorescent-tagged antibodies to tyrosine hydroxylase in the substantia nigra pars compacta (SNpc). There was no evidence that PQ induced neuronal degeneration in the SNpc or degenerating neuronal processes in the striatum, as indicated by the absence of uptake of silver stain or reduced immunolabeling of tyrosine-hydroxylase-positive (TH(+)) neurons. There was no evidence of apoptotic cell death, which was evaluated using TUNEL or caspase 3 assays. Microglia (IBA-1 immunoreactivity) and astrocytes (GFAP immunoreactivity) were not activated in PQ-treated mice 4, 8, 16, 24, 48, 96 or 168 h after 1, 2 or 3 doses of PQ. In contrast, mice dosed with the positive control substance, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 10mg/kg/dose×4 doses, 2 h apart), displayed significantly reduced DA and DOPAC concentrations and increased DA turnover in the striatum 7 days after dosing. The number of TH(+) neurons in the SNpc was reduced, and there were increased numbers of degenerating neurons and neuronal processes in the SNpc and striatum. MPTP-mediated cell death was not attributed to apoptosis. MPTP activated microglia and astrocytes within 4 h of the last dose, reaching a peak within 48 h. The microglial response ended by 96 h in the SNpc, but the astrocytic response continued through 168 h in the striatum. These results bring into question previous published stereological studies that report loss of TH(+) neurons in the SNpc of PQ-treated mice. This study also suggests that even if the reduction in TH(+) neurons reported by others occurs in PQ-treated mice, this apparent phenotypic change is unaccompanied by neuronal cell death or by modification of dopamine levels in the striatum.


Subject(s)
Basal Ganglia/drug effects , Herbicides/pharmacokinetics , Herbicides/toxicity , Paraquat/pharmacokinetics , Paraquat/toxicity , Substantia Nigra/drug effects , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacokinetics , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Basal Ganglia/metabolism , Basal Ganglia/pathology , Cell Death/drug effects , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Dose-Response Relationship, Drug , Drug Administration Schedule , Half-Life , Herbicides/administration & dosage , Homovanillic Acid/metabolism , Injections, Intraperitoneal , MPTP Poisoning/metabolism , MPTP Poisoning/pathology , Male , Metabolic Clearance Rate , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Nerve Degeneration , Paraquat/administration & dosage , Substantia Nigra/metabolism , Substantia Nigra/pathology , Tyrosine 3-Monooxygenase/metabolism
11.
Regul Toxicol Pharmacol ; 62(2): 241-7, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22198561

ABSTRACT

Toxicokinetic (TK) information can substantially enhance the value of the data generated from toxicity testing, and is an integral part of pharmaceutical safety assessment. It is less widely used in the chemical, agrochemical and consumer products industries, but recognition of its value is growing, as reflected by increased reference to the use of TK information in new and draft OECD test guidelines. To help promote increased consideration of the important role TK can play in chemical risk assessment, we have gathered practical examples from the peer-reviewed literature, as well as in-house industry data, that highlight opportunities for the use of TK in the selection of dose levels. Use of TK can help to ensure studies are designed to be of most relevance to assessing potential risk in humans, and avoid the use of excessively high doses that could result in unnecessary suffering in experimental animals. Greater emphasis on the potential contribution of TK in guiding study design and interpretation should be incorporated in regulatory data requirements and associated guidance.


Subject(s)
Pharmacokinetics , Risk Assessment/methods , Animals , Dose-Response Relationship, Drug , Female , Guidelines as Topic , Humans , Male , Rats , Research Design
12.
Regul Toxicol Pharmacol ; 62(2): 302-12, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22119668

ABSTRACT

Although regulatory agencies formally encourage the integration of all available data in chemical risk assessment, consistent implementation of this practice has been constrained by the lack of a clear, systematic method for doing so. In this paper, we describe a methodology for evaluating, classifying and integrating human and animal data into the risk assessment process that incorporates: (1) a balanced appraisal of human and animal data, (2) relevance to different stages of the risk assessment process, and (3) accommodation for different data quality requirements. The proposed framework offers a flexible, step-wise approach for determining which set of available data best support the chemical risk assessment that involves the rating and relative ranking of human and animal data quality. The evaluation of human data incorporates seven data quality elements, nature and specificity of the lead effect; evaluation of animal data incorporates data quality and relevance to humans. Results of simulations with selected chemicals previously evaluated in a formal risk assessment generally agreed with existing regulatory guidance. Application of the proposed framework across a wider range of chemical agents will improve transparency of the risk assessment process and validity of results, while informing continuous refinements to this evolving methodology.


Subject(s)
Risk Assessment , Animals , Humans , Statistics as Topic
13.
J Cheminform ; 3(1): 24, 2011 Jul 13.
Article in English | MEDLINE | ID: mdl-21752279

ABSTRACT

BACKGROUND: Due to recent advances in data storage and sharing for further data processing in predictive toxicology, there is an increasing need for flexible data representations, secure and consistent data curation and automated data quality checking. Toxicity prediction involves multidisciplinary data. There are hundreds of collections of chemical, biological and toxicological data that are widely dispersed, mostly in the open literature, professional research bodies and commercial companies. In order to better manage and make full use of such large amount of toxicity data, there is a trend to develop functionalities aiming towards data governance in predictive toxicology to formalise a set of processes to guarantee high data quality and better data management. In this paper, data quality mainly refers in a data storage sense (e.g. accuracy, completeness and integrity) and not in a toxicological sense (e.g. the quality of experimental results). RESULTS: This paper reviews seven widely used predictive toxicology data sources and applications, with a particular focus on their data governance aspects, including: data accuracy, data completeness, data integrity, metadata and its management, data availability and data authorisation. This review reveals the current problems (e.g. lack of systematic and standard measures of data quality) and desirable needs (e.g. better management and further use of captured metadata and the development of flexible multi-level user access authorisation schemas) of predictive toxicology data sources development. The analytical results will help to address a significant gap in toxicology data quality assessment and lead to the development of novel frameworks for predictive toxicology data and model governance. CONCLUSIONS: While the discussed public data sources are well developed, there nevertheless remain some gaps in the development of a data governance framework to support predictive toxicology. In this paper, data governance is identified as the new challenge in predictive toxicology, and a good use of it may provide a promising framework for developing high quality and easy accessible toxicity data repositories. This paper also identifies important research directions that require further investigation in this area.

14.
Regul Toxicol Pharmacol ; 55(3): 291-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19665509

ABSTRACT

While toxicokinetics has become an integral part of pharmaceutical safety assessment over the last two decades, its use in the chemical industry is relatively new. However, it is recognised as a potentially important tool in human health risk assessment and recent initiatives have advocated greater application of toxicokinetics as part of an improved assessment strategy for crop protection chemicals that could offer greater efficiency, use fewer animals and provide better data for risk assessment purposes. To explore the potential scientific and animal welfare benefits of increased use of toxicokinetic data across the chemical industry, an international workshop was held in 2008. Experts from a wide range of chemical industry sectors, including industrial chemicals, agrochemicals and consumer products, participated in the meeting as well as representatives from relevant regulatory authorities. Pharmaceutical industry experts were also invited, in order to share experiences from the extensive use of toxicokinetics in drug development. Given that increased generation of toxicokinetic data could potentially result in an increased number of animals undergoing testing, technologies and strategies to reduce and refine animal use for this purpose were also considered. This paper outlines and expands upon the key themes that emerged from the workshop.


Subject(s)
Animal Welfare , Chemical Industry/methods , Toxicity Tests/methods , Animals , Animals, Laboratory , Drug Industry/methods , Pharmacokinetics , Risk Assessment/methods
15.
Regul Toxicol Pharmacol ; 43(3): 280-91, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16143439

ABSTRACT

The use of no observed adverse effect levels (NOAELs) as a way of interpreting toxicology studies carries a number of problems, and the benchmark dose (BMD), or its lower confidence limit have been proposed as potential replacements. In practice, the theoretical advantages of the BMD approach are often outweighed by the practical disadvantages posed in a regulatory context. Attempts to seek consensus for the routine use of BMD methodology tend to involve diluting its potential advantages as much as they address the disadvantages, resulting in a relatively complex interpolation tool that delivers little more than the NOAEL. It is time to recognise that the BMD will never entirely replace the NOAEL. The two methods can have complementary roles. The NOAEL is well suited as a routine simple summary of effects in toxicology studies, whilst the BMD can be a higher tier approach for the interpretation of the most critical studies in a regulatory data package.


Subject(s)
Legislation as Topic/standards , No-Observed-Adverse-Effect Level , Toxicology/legislation & jurisprudence , Toxicology/standards , Algorithms , Animals , Computer Simulation , Dose-Response Relationship, Drug , Humans , Research Design , Software
16.
J Environ Qual ; 34(3): 1004-15, 2005.
Article in English | MEDLINE | ID: mdl-15888886

ABSTRACT

The Acetochlor Registration Partnership conducted a prospective ground water (PGW) monitoring program to investigate acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide] transport to ground water at eight sites. The distribution of soil textures among these sites was weighted toward coarser soil types, while also including finer-textured soils that dominate most corn (Zea mays L.)-growing areas of the United States. Each site consisted of a 1.2-ha test plot adjacent to a 0.2-ha control plot. Suction lysimeters and monitoring wells were installed at multiple depths within each test and control plot to sample soil-pore water and near-surface ground water. Irrigation was applied to each site during the growing season to ensure water input of 110 to 200% of average historical rainfall. Acetochlor dissipated rapidly from surface soils at all sites with a DT(50) (time for 50% of the initial residues to dissipate) of only 3 to 9 d, but leaching was not an important loss mechanism, with only 0.25% of the 15,312 soil-pore water and ground water samples analyzed containing parent acetochlor at or above 0.05 microg L(-1). However, quantifiable residues of a soil degradation product, acetochlor ethanesulfonic acid, were more common, with approximately 16% of water samples containing concentrations at or above 1.0 microg L(-1). A second soil degradation product, acetochlor oxanilic acid, was present at concentrations at or above 1.0 microg L(-1) in only 0.15% of water samples analyzed. The acetochlor PGW program demonstrated that acetochlor lacks the potential to leach to ground water at detectable concentrations, and when applied in accordance with label restrictions, is unlikely to move to ground water at concentrations hazardous to human health.


Subject(s)
Environmental Monitoring , Herbicides/analysis , Soil Pollutants/analysis , Toluidines/analysis , Water Pollutants/analysis , Humans , Porosity , Public Health , Risk Assessment , Solubility , United States , Water Movements
17.
J Environ Qual ; 34(3): 793-803, 2005.
Article in English | MEDLINE | ID: mdl-15843642

ABSTRACT

The Acetochlor Registration Partnership (ARP) conducted a 7-yr ground water monitoring program at a total of 175 sites in seven states: Illinois, Indiana, Iowa, Kansas, Minnesota, Nebraska, and Wisconsin. While acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide] was the primary focus, the analytical methods also quantified alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide], and two classes of soil degradates for acetochlor, alachlor, and metolachlor. Ground water samples were collected monthly for five years and quarterly for two additional years. All samples were analyzed for the presence of parent herbicides, and degradates were monitored during the last three years. Parent acetochlor was detected above 0.1 microg L(-1) in three or more samples at just seven sites. Alachlor and metolachlor were also rarely detected, but atrazine was detected in 36% of all samples analyzed. Even more widespread were the tertiary amide sulfonic acid (ethanesulfonic acid, ESA) degradates of acetochlor, alachlor, and metolachlor, which were detected at 81, 76, and 106 sites, respectively. The other class of monitored soil degradates (oxanilic acid, OXA) was detected less frequently, at 26, 16, and 63 sites for acetochlor OXA, alachlor OXA, and metolachlor OXA, respectively. The geographic distribution of detections did not follow the pattern originally expected when the study began. Rather than being a function primarily of soil texture, the detection of these herbicides in shallow ground water was related to site-specific factors associated with local topography, the occurrence of surface water drainage features, irrigation practices, and the vertical positioning of the well screen.


Subject(s)
Herbicides/analysis , Toluidines/analysis , Water Pollutants/analysis , Agriculture , Environmental Monitoring , Soil , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...