Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Circ Res ; 134(5): e3-e14, 2024 03.
Article in English | MEDLINE | ID: mdl-38348651

ABSTRACT

BACKGROUND: Posttranslational glycosylation of IgG can modulate its inflammatory capacity through structural variations. We examined the association of baseline IgG N-glycans and an IgG glycan score with incident cardiovascular disease (CVD). METHODS: IgG N-glycans were measured in 2 nested CVD case-control studies: JUPITER (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin; NCT00239681; primary prevention; discovery; Npairs=162); and TNT trial (Treating to New Targets; NCT00327691; secondary prevention; validation; Npairs=397). Using conditional logistic regression, we investigated the association of future CVD with baseline IgG N-glycans and a glycan score adjusting for clinical risk factors (statin treatment, age, sex, race, lipids, hypertension, and smoking) in JUPITER. Significant associations were validated in TNT, using a similar model further adjusted for diabetes. Using least absolute shrinkage and selection operator regression, an IgG glycan score was derived in JUPITER as a linear combination of selected IgG N-glycans. RESULTS: Six IgG N-glycans were associated with CVD in both studies: an agalactosylated glycan (IgG-GP4) was positively associated, while 3 digalactosylated glycans (IgG glycan peaks 12, 13, 14) and 2 monosialylated glycans (IgG glycan peaks 18, 20) were negatively associated with CVD after multiple testing correction (overall false discovery rate <0.05). Four selected IgG N-glycans comprised the IgG glycan score, which was associated with CVD in JUPITER (adjusted hazard ratio per glycan score SD, 2.08 [95% CI, 1.52-2.84]) and validated in TNT (adjusted hazard ratio per SD, 1.20 [95% CI, 1.03-1.39]). The area under the curve changed from 0.693 for the model without the score to 0.728 with the score in JUPITER (PLRT=1.1×10-6) and from 0.635 to 0.637 in TNT (PLRT=0.017). CONCLUSIONS: An IgG N-glycan profile was associated with incident CVD in 2 populations (primary and secondary prevention), involving an agalactosylated glycan associated with increased risk of CVD, while several digalactosylated and sialylated IgG glycans associated with decreased risk. An IgG glycan score was positively associated with future CVD.


Subject(s)
Cardiovascular Diseases , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Humans , Immunoglobulin G , Glycosylation , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Case-Control Studies , Polysaccharides
2.
Aging (Albany NY) ; 15(24): 14509-14552, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38149987

ABSTRACT

Glycans are an essential structural component of immunoglobulin G (IgG) that modulate its structure and function. However, regulatory mechanisms behind this complex posttranslational modification are not well known. Previous genome-wide association studies (GWAS) identified 29 genomic regions involved in regulation of IgG glycosylation, but only a few were functionally validated. One of the key functional features of IgG glycosylation is the addition of galactose (galactosylation), a trait which was shown to be associated with ageing. We performed GWAS of IgG galactosylation (N=13,705) and identified 16 significantly associated loci, indicating that IgG galactosylation is regulated by a complex network of genes that extends beyond the galactosyltransferase enzyme that adds galactose to IgG glycans. Gene prioritization identified 37 candidate genes. Using a recently developed CRISPR/dCas9 system we manipulated gene expression of candidate genes in the in vitro IgG expression system. Upregulation of three genes, EEF1A1, MANBA and TNFRSF13B, changed the IgG glycome composition, which confirmed that these three genes are involved in IgG galactosylation in this in vitro expression system.


Subject(s)
Galactose , Genome-Wide Association Study , Gene Regulatory Networks , Immunoglobulin G/genetics , Polysaccharides/metabolism
3.
Biomolecules ; 13(6)2023 06 07.
Article in English | MEDLINE | ID: mdl-37371534

ABSTRACT

Crohn's disease (CD) is a chronic inflammation of the digestive tract that significantly impairs patients' quality of life and well-being. Anti-TNF biologicals revolutionised the treatment of CD, yet many patients do not adequately respond to such therapy. Previous studies have demonstrated a pro-inflammatory pattern in the composition of CD patients' immunoglobulin G (IgG) N-glycome compared to healthy individuals. Here, we utilised the high-throughput UHPLC method for N-glycan analysis to explore the longitudinal effect of the anti-TNF drugs infliximab and adalimumab on N-glycome composition of total serum IgG in 198 patients, as well as the predictive potential of IgG N-glycans at baseline to detect primary non-responders to anti-TNF therapy in 1315 patients. We discovered a significant decrease in IgG agalactosylation and an increase in monogalactosylation, digalactosylation and sialylation during the 14 weeks of anti-TNF treatment, regardless of therapy response, all of which suggested a diminished inflammatory environment in CD patients treated with anti-TNF therapy. Furthermore, we observed that IgG N-glycome might contain certain information regarding the anti-TNF therapy outcome before initiating the treatment. However, it is impossible to predict future primary non-responders to anti-TNF therapy based solely on IgG N-glycome composition at baseline.


Subject(s)
Biological Products , Crohn Disease , Humans , Crohn Disease/drug therapy , Tumor Necrosis Factor Inhibitors/therapeutic use , Immunoglobulin G/therapeutic use , Biological Products/therapeutic use , Quality of Life , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Biological Factors/therapeutic use , Tumor Necrosis Factor-alpha
4.
Commun Biol ; 6(1): 312, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36959410

ABSTRACT

Human plasma transferrin (Tf) N-glycosylation has been mostly studied as a marker for congenital disorders of glycosylation, alcohol abuse, and hepatocellular carcinoma. However, inter-individual variability of Tf N-glycosylation is not known, mainly due to technical limitations of Tf isolation in large-scale studies. Here, we present a highly specific robust high-throughput approach for Tf purification from human blood plasma and detailed characterization of Tf N-glycosylation on the level of released glycans by ultra-high-performance liquid chromatography based on hydrophilic interactions and fluorescence detection (HILIC-UHPLC-FLD), exoglycosidase sequencing, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). We perform a large-scale comparative study of Tf and immunoglobulin G (IgG) N-glycosylation analysis in two human populations and demonstrate that Tf N-glycosylation is associated with age and sex, along with multiple biochemical and physiological traits. Observed association patterns differ compared to the IgG N-glycome corroborating tissue-specific N-glycosylation and specific N-glycans' role in their distinct physiological functions.


Subject(s)
Immunoglobulin G , Protein Processing, Post-Translational , Transferrin , Humans , Glycosylation , High-Throughput Screening Assays , Immunoglobulin G/blood , Immunoglobulin G/chemistry , Transferrin/chemistry , Transferrin/isolation & purification , Polysaccharides/analysis
5.
BMC Cancer ; 23(1): 166, 2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36805683

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of melanoma and other cancers. However, no reliable biomarker of survival or response has entered the clinic to identify those patients with melanoma who are most likely to benefit from ICIs. Glycosylation affects proteins and lipids' structure and functions. Tumours are characterized by aberrant glycosylation which may contribute to their progression and hinder an effective antitumour immune response. METHODS: We aim at identifying novel glyco-markers of response and survival by leveraging the N-glycome of total serum proteins collected in 88 ICI-naive patients with advanced melanoma from two European countries. Samples were collected before and during ICI treatment. RESULTS: We observe that responders to ICIs present with a pre-treatment N-glycome profile significantly shifted towards higher abundancy of low-branched structures containing lower abundances of antennary fucose, and that this profile is positively associated with survival and a better predictor of response than clinical variables alone. CONCLUSION: While changes in serum protein glycosylation have been previously implicated in a pro-metastatic melanoma behaviour, we show here that they are also associated with response to ICI, opening new avenues for the stratification of patients and the design of adjunct therapies aiming at improving immune response.


Subject(s)
Immune Checkpoint Inhibitors , Melanoma , Humans , Melanoma/drug therapy , Ambulatory Care Facilities , Europe , Polysaccharides
6.
Biotechnol Bioeng ; 120(2): 491-502, 2023 02.
Article in English | MEDLINE | ID: mdl-36324280

ABSTRACT

Haptoglobin (Hp) is a positive acute phase protein, synthesized in the liver, with four N-glycosylation sites carrying mainly complex type N-glycans. Its glycosylation is altered in different types of diseases but still has not been extensively studied mainly due to analytical challenges, especially the lack of a fast, efficient, and robust high-throughput Hp isolation procedure. Here, we describe the development of a high-throughput method for Hp enrichment from human plasma, based on monolithic chromatographic support in immunoaffinity mode and downstream Hp N-glycome analysis by hydrophilic interaction ultrahigh-performance liquid chromatography with fluorescent detection (HILIC-UHPLC-FLR). Chromatographic monolithic supports in a 96-well format enable fast, efficient, and robust Hp enrichment directly from diluted plasma samples. The N-glycome analysis demonstrated that a degree of Hp deglycosylation differs depending on the conditions used for N-glycan release and on the specific glycosylation site, with Asn 241 being the most resistant to deglycosylation under tested conditions. HILIC-UHPLC-FLR analysis enables robust quantification of 28 individual chromatographic peaks, in which N-glycan compositions were determined by UHPLC coupled to electrospray ionization quadrupole time of flight mass spectrometry. The developed analytical approach enables fast evaluation of total Hp N-glycosylation and is applicable in large-scale studies.


Subject(s)
Haptoglobins , Spectrometry, Mass, Electrospray Ionization , Humans , Chromatography, Liquid , Glycosylation , Polysaccharides/chemistry
7.
Article in English | MEDLINE | ID: mdl-36093331

ABSTRACT

The essential role of immunoglobulin G (IgG) in immune system regulation and combatting infectious diseases cannot be fully recognized without an understanding of the changes in its N-glycans attached to the asparagine 297 of the Fc domain that occur under such circumstances. These glycans impact the antibody stability, half-life, secretion, immunogenicity, and effector functions. Therefore, in this study, we analyzed and compared the total IgG glycome-at the level of individual glycan structures and derived glycosylation traits (sialylation, galactosylation, fucosylation, and bisecting N-acetylglucosamine (GlcNAc))-of 64 patients with influenza, 77 patients with coronavirus disease 2019 (COVID-19), and 56 healthy controls. Our study revealed a significant decrease in IgG galactosylation, sialylation, and bisecting GlcNAc (where the latter shows the most significant decrease) in deceased COVID-19 patients, whereas IgG fucosylation was increased. On the other hand, IgG galactosylation remained stable in influenza patients and COVID-19 survivors. IgG glycosylation in influenza patients was more time-dependent: In the first seven days of the disease, sialylation increased and fucosylation and bisecting GlcNAc decreased; in the next 21 days, sialylation decreased and fucosylation increased (while bisecting GlcNAc remained stable). The similarity of IgG glycosylation changes in COVID-19 survivors and influenza patients may be the consequence of an adequate immune response to enveloped viruses, while the observed changes in deceased COVID-19 patients may indicate its deviation.

8.
Diabetes Care ; 45(11): 2729-2736, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36174116

ABSTRACT

OBJECTIVE: N-glycosylation is a functional posttranslational modification of immunoglobulins (Igs). We hypothesized that specific IgG N-glycans are associated with incident type 2 diabetes and cardiovascular disease (CVD). RESEARCH DESIGN AND METHODS: We performed case-cohort studies within the population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort (2,127 in the type 2 diabetes subcohort [741 incident cases]; 2,175 in the CVD subcohort [417 myocardial infarction and stroke cases]). Relative abundances of 24 IgG N-glycan peaks (IgG-GPs) were measured by ultraperformance liquid chromatography, and eight glycosylation traits were derived based on structural similarity. End point-associated IgG-GPs were preselected with fractional polynomials, and prospective associations were estimated in confounder-adjusted Cox models. Diabetes risk associations were validated in three independent studies. RESULTS: After adjustment for confounders and multiple testing correction, IgG-GP7, IgG-GP8, IgG-GP9, IgG-GP11, and IgG-GP19 were associated with type 2 diabetes risk. A score based on these IgG-GPs was associated with a higher diabetes risk in EPIC-Potsdam and independent validation studies (843 total cases, 3,149 total non-cases, pooled estimate per SD increase 1.50 [95% CI 1.37-1.64]). Associations of IgG-GPs with CVD risk differed between men and women. In women, IgG-GP9 was inversely associated with CVD risk (hazard ratio [HR] per SD 0.80 [95% CI 0.65-0.98]). In men, a weighted score based on IgG-GP19 and IgG-GP23 was associated with higher CVD risk (HR per SD 1.47 [95% CI 1.20-1.80]). In addition, several derived traits were associated with cardiometabolic disease incidence. CONCLUSIONS: Selected IgG N-glycans are associated with cardiometabolic risk beyond classic risk factors, including clinical biomarkers.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Male , Humans , Female , Glycosylation , Cardiovascular Diseases/epidemiology , Diabetes Mellitus, Type 2/epidemiology , Immunoglobulin G , Risk Factors , Polysaccharides , Incidence
9.
Chem Rev ; 122(20): 15865-15913, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-35797639

ABSTRACT

Glycomics aims to identify the structure and function of the glycome, the complete set of oligosaccharides (glycans), produced in a given cell or organism, as well as to identify genes and other factors that govern glycosylation. This challenging endeavor requires highly robust, sensitive, and potentially automatable analytical technologies for the analysis of hundreds or thousands of glycomes in a timely manner (termed high-throughput glycomics). This review provides a historic overview as well as highlights recent developments and challenges of glycomic profiling by the most prominent high-throughput glycomic approaches, with N-glycosylation analysis as the focal point. It describes the current state-of-the-art regarding levels of characterization and most widely used technologies, selected applications of high-throughput glycomics in deciphering glycosylation process in healthy and disease states, as well as future perspectives.


Subject(s)
Glycomics , Polysaccharides , Glycomics/methods , Glycosylation , Polysaccharides/chemistry
11.
EBioMedicine ; 81: 104101, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35773089

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes a respiratory illness named coronavirus disease 2019 (COVID-19), which is one of the main global health problems since 2019. Glycans attached to the Fc portion of immunoglobulin G (IgG) are important modulators of IgG effector functions. Fc region binds to different receptors on the surface of various immune cells, dictating the type of immune response. Here, we performed a large longitudinal study to determine whether the severity and duration of COVID-19 are associated with altered IgG glycosylation. METHODS: Using ultra-high-performance liquid chromatography analysis of released glycans, we analysed the composition of the total IgG N-glycome longitudinally during COVID-19 from four independent cohorts. We analysed 77 severe COVID-19 cases from the HR1 cohort (74% males, median age 72, age IQR 25-80); 31 severe cases in the HR2 cohort (77% males, median age 64, age IQR 41-86), 18 mild COVID-19 cases from the UK cohort (17% males, median age 50, age IQR 26-71) and 28 mild cases from the BiH cohort (71% males, median age 60, age IQR 12-78). FINDINGS: Multiple statistically significant changes in IgG glycome composition were observed during severe COVID-19. The most statistically significant changes included increased agalactosylation of IgG (meta-analysis 95% CI [0.03, 0.07], adjusted meta-analysis P= <0.0001), which regulates proinflammatory actions of IgG via complement system activation and indirectly as a lack of sialylation and decreased presence of bisecting N-acetylglucosamine on IgG (meta-analysis 95% CI [-0.11, -0.08], adjusted meta-analysis P= <0.0001), which indirectly affects antibody-dependent cell-mediated cytotoxicity. On the contrary, no statistically significant changes in IgG glycome composition were observed in patients with mild COVID-19. INTERPRETATION: The IgG glycome in severe COVID-19 patients is statistically significantly altered in a way that it indicates decreased immunosuppressive action of circulating immunoglobulins. The magnitude of observed changes is associated with the severity of the disease, indicating that aberrant IgG glycome composition or changes in IgG glycosylation may be an important molecular mechanism in COVID-19. FUNDING: This work has been supported in part by Croatian Science Foundation under the project IP-CORONA-2020-04-2052 and Croatian National Centre of Competence in Molecular Diagnostics (The European Structural and Investment Funds grant #KK.01.2.2.03.0006), by the UKRI/MRC (Cov-0331 - MR/V027883/1) and by the National Institutes for Health Research Nottingham Biomedical Research Centre and by Ministry Of Science, Higher Education and Youth Of Canton Sarajevo, grant number 27-02-11-4375-10/21.


Subject(s)
COVID-19 , Immunoglobulin G , Adolescent , Aged , Female , Humans , Longitudinal Studies , Male , Middle Aged , Observational Studies as Topic , Polysaccharides/metabolism , SARS-CoV-2
12.
Glycobiology ; 32(8): 651-663, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35452121

ABSTRACT

Glycans expand the structural complexity of proteins by several orders of magnitude, resulting in a tremendous analytical challenge when including them in biomedical research. Recent glycobiological research is painting a picture in which glycans represent a crucial structural and functional component of the majority of proteins, with alternative glycosylation of proteins and lipids being an important regulatory mechanism in many biological and pathological processes. Since interindividual differences in glycosylation are extensive, large studies are needed to map the structures and to understand the role of glycosylation in human (patho)physiology. Driven by these challenges, methods have emerged, which can tackle the complexity of glycosylation in thousands of samples, also known as high-throughput (HT) glycomics. For facile dissemination and implementation of HT glycomics technology, the sample preparation, analysis, as well as data mining, need to be stable over a long period of time (months/years), amenable to automation, and available to non-specialized laboratories. Current HT glycomics methods mainly focus on protein N-glycosylation and allow to extensively characterize this subset of the human glycome in large numbers of various biological samples. The ultimate goal in HT glycomics is to gain better knowledge and understanding of the complete human glycome using methods that are easy to adapt and implement in (basic) biomedical research. Aiming to promote wider use and development of HT glycomics, here, we present currently available, emerging, and prospective methods and some of their applications, revealing a largely unexplored molecular layer of the complexity of life.


Subject(s)
Glycomics , Proteins , Glycomics/methods , Glycosylation , Humans , Polysaccharides/chemistry , Proteins/metabolism
13.
Nat Commun ; 13(1): 1586, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35332118

ABSTRACT

Post-translational modifications diversify protein functions and dynamically coordinate their signalling networks, influencing most aspects of cell physiology. Nevertheless, their genetic regulation or influence on complex traits is not fully understood. Here, we compare the genetic regulation of the same PTM of two proteins - glycosylation of transferrin and immunoglobulin G (IgG). By performing genome-wide association analysis of transferrin glycosylation, we identify 10 significantly associated loci, 9 of which were not reported previously. Comparing these with IgG glycosylation-associated genes, we note protein-specific associations with genes encoding glycosylation enzymes (transferrin - MGAT5, ST3GAL4, B3GAT1; IgG - MGAT3, ST6GAL1), as well as shared associations (FUT6, FUT8). Colocalisation analyses of the latter suggest that different causal variants in the FUT genes regulate fucosylation of the two proteins. Glycosylation of these proteins is thus genetically regulated by both shared and protein-specific mechanisms.


Subject(s)
Genome-Wide Association Study , Transferrin , Glycosylation , Immunoglobulin G/metabolism , Protein Processing, Post-Translational , Transferrin/genetics , Transferrin/metabolism
14.
iScience ; 25(3): 103897, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35243255

ABSTRACT

Gonadal hormones affect immunoglobulin G (IgG) glycosylation, and the more proinflammatory IgG glycome composition might be one of the molecular mechanisms behind the increased proinflammatory phenotype in perimenopause. Using ultra-high-performance liquid chromatography, we analyzed IgG glycome composition in 5,080 samples from 1940 pre-, peri-, and postmenopausal women. Statistically significant decrease in galactosylation and sialylation was observed in postmenopausal women. Furthermore, during the transition from pre- to postmenopausal period, the rate of increase in agalactosylated structures (0.051/yr; 95%CI = 0.043-0.059, p < 0.001) and decrease in digalactosylated (-0.043/yr; 95%CI = -0.050 to -0.037, p < 0.001) and monosialylated glycans (-0.029/yr; 95%CI = -0.034 to -0.024, p < 0.001) were significantly higher than in either pre- or postmenopausal periods. The conversion to the more proinflammatory IgG glycome and the resulting decrease in the ability of IgG to suppress low-grade chronic inflammation may be an important molecular mechanism mediating the increased health risk in perimenopause and postmenopause.

15.
Exp Suppl ; 112: 29-72, 2021.
Article in English | MEDLINE | ID: mdl-34687007

ABSTRACT

Immunoglobulin (Ig) glycosylation has been shown to dramatically affect its structure and effector functions. Ig glycosylation changes have been associated with different diseases and show a promising biomarker potential for diagnosis and prognosis of disease advancement. On the other hand, therapeutic biomolecules based on structural and functional features of Igs demand stringent quality control during the production process to ensure their safety and efficacy. Liquid chromatography (LC) and lectin-based methods are routinely used in Ig glycosylation analysis complementary to other analytical methods, e.g., mass spectrometry and capillary electrophoresis. This chapter covers analytical approaches based on LC and lectins used in low- and high-throughput N- and O-glycosylation analysis of Igs, with the focus on immunoglobulin G (IgG) applications. General principles and practical examples of the most often used LC methods for Ig purification are described, together with typical workflows for N- and O-glycan analysis on the level of free glycans, glycopeptides, subunits, or intact Igs. Lectin chromatography is a historical approach for the analysis of lectin-carbohydrate interactions and glycoprotein purification but is still being used as a valuable tool in Igs purification and glycan analysis. On the other hand, lectin microarrays have found their application in the rapid screening of glycan profiles on intact proteins.


Subject(s)
Immunoglobulin G , Lectins , Chromatography, Liquid , Glycosylation , Lectins/metabolism , Mass Spectrometry
16.
Life (Basel) ; 11(9)2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34575138

ABSTRACT

BACKGROUND: Male infertility is increasingly becoming a health and demographic problem. While it may originate from congenital or acquired diseases, it can also result from environmental exposure. Hence, the complexity of involved molecular mechanisms often requires a multiparametric approach. This study aimed to associate semen parameters with sperm DNA fragmentation, chromatin maturity and seminal plasma protein N-glycosylation. METHODS: The study was conducted with 166 participants, 20-55 y old, 82 normozoospermic and 84 with pathological diagnosis. Sperm was analyzed by Halosperm assay and aniline blue staining, while seminal plasma total protein N-glycans were analyzed by ultra-high-performance liquid chromatography. RESULTS: Sperm DNA fragmentation was significantly increased in the pathological group and was inversely correlated with sperm motility and viability. Seminal plasma total protein N-glycans were chromatographically separated in 37 individual peaks. The pattern of seminal plasma N-glycan peaks (SPGP) showed that SPGP14 significantly differs between men with normal and pathological semen parameters (p < 0.001). The multivariate analysis showed that when sperm chromatin maturity increases by 10%, SPGP17 decreases by 14% while SPGP25 increases by 25%. CONCLUSION: DNA integrity and seminal plasma N-glycans are associated with pathological sperm parameters. Specific N-glycans are also associated with sperm chromatin maturity and have a potential in future fertility research and clinical diagnostics.

17.
Adv Exp Med Biol ; 1325: 239-264, 2021.
Article in English | MEDLINE | ID: mdl-34495539

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently one of the major health problems worldwide. SARS-CoV-2 survival and virulence are shown to be impacted by glycans, covalently attached to proteins in a process of glycosylation, making glycans an area of interest in SARS-CoV-2 biology and COVID-19 infection. The SARS-CoV-2 uses its highly glycosylated spike (S) glycoproteins to bind to the cell surface receptor angiotensin-converting enzyme 2 (ACE2) glycoprotein and facilitate host cell entry. Viral glycosylation has wide-ranging roles in viral pathobiology, including mediating protein folding and stability, immune evasion, host receptor attachment, and cell entry. Modification of SARS-CoV-2 envelope membrane with glycans is important in host immune recognition and interaction between S and ACE2 glycoproteins. On the other hand, immunoglobulin G, a key molecule in immune response, shows a distinct glycosylation profile in COVID-19 infection and with increased disease severity. Hence, further studies on the role of glycosylation in SARS-CoV-2 infectivity and COVID-19 infection are needed for its successful prevention and treatment. This chapter focuses on recent findings on the importance of glycosylation in COVID-19 infection.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Glycosylation , Humans , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
18.
Glycoconj J ; 38(5): 611-623, 2021 10.
Article in English | MEDLINE | ID: mdl-34542788

ABSTRACT

The severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) infection displays a wide array of clinical manifestations. Although some risk factors for coronavirus disease 2019 (COVID-19) severity and outcomes have been identified the underlying biologic mechanisms are still not well understood. The surface SARS-CoV-2 proteins are heavily glycosylated enabling host cell interaction and viral entry. Angiotensin-converting enzyme 2 (ACE2) has been identified to be the main host cell receptor enabling SARS-CoV-2 cell entry after interaction with its S glycoprotein. However, recent studies report SARS-CoV-2 S glycoprotein interaction with other cell receptors, mainly C-type lectins which recognize specific glycan epitopes facilitating SARS-CoV-2 entry to susceptible cells. Here, we are summarizing the main findings on SARS-CoV-2 interactions with ACE2 and other cell membrane surface receptors and soluble lectins involved in the viral cell entry modulating its infectivity and potentially playing a role in subsequent clinical manifestations of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Glycoproteins/metabolism , Lectins, C-Type/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Glycosylation , Humans
19.
J Pers Med ; 11(7)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209622

ABSTRACT

OBJECTIVES: Hypertension and type 2 diabetes mellitus comorbidity (HDC) is common, which confers a higher risk of cardiovascular disease than the presence of either condition alone. Describing the underlying glycomic changes of immunoglobulin G (IgG) that predispose individuals to HDC may help develop novel protective immune-targeted and anti-inflammatory therapies. Therefore, we investigated glycosylation changes of IgG associated with HDC. METHODS: The IgG N-glycan profiles of 883 plasma samples from the three northwestern Chinese Muslim ethnic minorities and the Han Chinese were analyzed by ultra-performance liquid chromatography instrument. RESULTS: We found that 12 and six IgG N-glycan traits showed significant associations with HDC in the Chinese Muslim ethnic minorities and the Han Chinese, respectively, after adjustment for potential confounders and false discovery rate. Adding the IgG N-glycan traits to the baseline models, the area under the receiver operating characteristic curves (AUCs) of the combined models differentiating HDC from hypertension (HTN), type 2 diabetes mellitus (T2DM), and healthy individuals were 0.717, 0.747, and 0.786 in the pooled samples of Chinese Muslim ethnic minorities, and 0.828, 0.689, and 0.901 in the Han Chinese, respectively, showing improved discriminating performance than both the baseline models and the glycan-based models. CONCLUSION: Altered IgG N-glycan profiles were shown to associate with HDC, suggesting the involvement of inflammatory processes of IgG glycosylation. The alterations of IgG N-glycome, illustrated here for the first time in HDC, demonstrate a biomarker potential, which may shed light on future studies investigating their potential for monitoring or preventing the progression from HTN or T2DM towards HDC.

20.
Glycobiology ; 31(9): 1062-1067, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34132802

ABSTRACT

Protein glycosylation is the attachment of a carbohydrate moiety to a protein backbone affecting both structure and function of the protein. Abnormal glycosylation is associated with various diseases, and some of the changes in glycosylation are detectable even before symptom development. As such, glycans have emerged as compelling new biomarker candidates. A wide range of analytical methods exist for small-scale glycan analyses. However, there is a growing need for highly robust and reproducible high-throughput techniques that allow for large-scale glycoprofiling. Here, we describe the evaluation of robustness and repeatability of immunoglobulin G (IgG) N-glycan analysis using the GlycoWorks RapiFluor-MS N-Glycan Kit followed by hydrophilic interaction ultra-high-performance liquid chromatography (HILIC-UHPLC) from 335 technical replicates of human plasma randomly distributed across 67 96-well plates. The data was collected over a 5-month period using multiple UHPLC systems and chromatographic columns. Following relative IgG N-glycan quantification in acquired chromatograms, data analysis showed that the most abundant peaks that together made up for three-fourths of the detected IgG N-glycome all had coefficients of variation (CVs) lower than 2%. The highest CVs ranging from 16 to 29% accompanied low abundance glycan peaks with the individual relative peak area below 1% that together made up for <2% of the detected IgG N-glycome. These results show that the tested method is very robust and repeatable, making it suitable for the IgG N-glycan analysis of a large number of samples in a high-throughput manner over a longer period of time.


Subject(s)
Glycomics , Immunoglobulin G , Chromatography, High Pressure Liquid/methods , Glycomics/methods , Glycosylation , Humans , Immunoglobulin G/chemistry , Polysaccharides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...