Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Thorax ; 75(11): 1020-1023, 2020 11.
Article in English | MEDLINE | ID: mdl-32887739

ABSTRACT

Neutrophils play an important role in the lung tumour microenvironment. We hypothesised that radiolabelled neutrophils coupled to single-photon emission CT (SPECT) may non-invasively quantify neutrophil uptake in tumours from patients with non-small cell lung cancer. We demonstrated increased uptake of radiolabelled neutrophils from the blood into tumours compared with non-specific uptake using radiolabelled transferrin. Moreover, indium-111-neutrophil activity in the tumour biopsies also correlated with myeloperoxidase (MPO)-positive neutrophils. Our data support the utility of imaging with In-111-labelled neutrophils and SPECT-CT to quantify neutrophil uptake in lung cancer.


Subject(s)
Lung Neoplasms/diagnostic imaging , Neutrophils , Tomography, Emission-Computed, Single-Photon , Adult , Biopsy , Female , Humans , Indium Radioisotopes , Lung Neoplasms/pathology , Male , Neoplasm Staging
2.
J Nucl Med ; 61(12): 1701-1707, 2020 12.
Article in English | MEDLINE | ID: mdl-32948678

ABSTRACT

PET with 18F-FDG has been increasingly applied, predominantly in the research setting, to study drug effects and pulmonary biology and to monitor disease progression and treatment outcomes in lung diseases that interfere with gas exchange through alterations of the pulmonary parenchyma, airways, or vasculature. To date, however, there are no widely accepted standard acquisition protocols or imaging data analysis methods for pulmonary 18F-FDG PET/CT in these diseases, resulting in disparate approaches. Hence, comparison of data across the literature is challenging. To help harmonize the acquisition and analysis and promote reproducibility, we collated details of acquisition protocols and analysis methods from 7 PET centers. From this information and our discussions, we reached the consensus recommendations given here on patient preparation, choice of dynamic versus static imaging, image reconstruction, and image analysis reporting.


Subject(s)
Consensus , Fluorodeoxyglucose F18 , Lung Diseases/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Practice Guidelines as Topic , Fluorodeoxyglucose F18/administration & dosage , Humans , Image Processing, Computer-Assisted , Injections , Lung Diseases/physiopathology , Patient Positioning , Respiration
3.
J Leukoc Biol ; 107(6): 1175-1185, 2020 06.
Article in English | MEDLINE | ID: mdl-32374077

ABSTRACT

Treatment with the CXCR4 antagonist, plerixafor (AMD3100), has been proposed for clinical use in patients with WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome and in pulmonary fibrosis. However, there is controversy with respect to the impact of plerixafor on neutrophil dynamics in the lung, which may affect its safety profile. In this study, we investigated the kinetics of endogenous neutrophils by direct imaging, using confocal intravital microscopy in mouse bone marrow, spleen, and lungs. Neutrophils are observed increasing their velocity and exiting the bone marrow following plerixafor administration, with a concomitant increase in neutrophil numbers in the blood and spleen, while the marginated pool of neutrophils in the lung microvasculature remained unchanged in terms of numbers and cell velocity. Use of autologous radiolabeled neutrophils and SPECT/CT imaging in healthy volunteers showed that plerixafor did not affect GM-CSF-primed neutrophil entrapment or release in the lungs. Taken together, these data suggest that plerixafor causes neutrophil mobilization from the bone marrow but does not impact on lung marginated neutrophil dynamics and thus is unlikely to compromise respiratory host defense both in humans and mice.


Subject(s)
Bone Marrow/drug effects , Hematopoietic Stem Cell Mobilization/methods , Heterocyclic Compounds/pharmacology , Lung/drug effects , Neutrophils/drug effects , Spleen/drug effects , Animals , Benzylamines , Bone Marrow/diagnostic imaging , Bone Marrow/immunology , Cell Tracking/methods , Cyclams , Female , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/immunology , Humans , Leukocyte Count , Lung/cytology , Lung/diagnostic imaging , Lung/immunology , Mice, Inbred C57BL , Neutrophils/cytology , Neutrophils/immunology , Radiopharmaceuticals/administration & dosage , Single Photon Emission Computed Tomography Computed Tomography , Spleen/cytology , Spleen/diagnostic imaging , Spleen/immunology , Technetium/administration & dosage
4.
Thorax ; 74(7): 659-666, 2019 07.
Article in English | MEDLINE | ID: mdl-30674586

ABSTRACT

RATIONALE: There is a need to develop imaging protocols which assess neutrophilic inflammation in the lung. AIM: To quantify whole lung neutrophil accumulation in (1) healthy volunteers (HV) following inhaled lipopolysaccharide (LPS) or saline and (2) patients with COPD using radiolabelled autologous neutrophils and single-photon emission computed tomography/CT (SPECT/CT). METHODS: 20 patients with COPD (Global initiative for chronic obstructive lung disease (GOLD) stages 2-3) and 18 HVs were studied. HVs received inhaled saline (n=6) or LPS (50 µg, n=12) prior to the injection of radiolabelled cells. Neutrophils were isolated using dextran sedimentation and Percoll plasma gradients and labelled with 99mTechnetium (Tc)-hexamethylpropyleneamine oxime. SPECT was performed over the thorax/upper abdomen at 45 min, 2 hours, 4 hours and 6 hours. Circulating biomarkers were measured prechallenge and post challenge. Blood neutrophil clearance in the lung was determined using Patlak-Rutland graphical analysis. RESULTS: There was increased accumulation of 99mTc-neutrophils in the lungs of patients with COPD and LPS-challenged subjects compared with saline-challenged subjects (saline: 0.0006±0.0003 mL/min/mL lung blood distribution volume [mean ±1 SD]; COPD: 0.0022±0.0010 mL/min/mL [p<0.001]; LPS: 0.0025±0.0008 mL/min/mL [p<0.001]). The accumulation of labelled neutrophils in 10 patients with COPD who underwent repeat radiolabelling/imaging 7-10 days later was highly reproducible (0.0022±0.0010 mL/min/mL vs 0.0023±0.0009 mL/min/mL). Baseline interleukin (IL)-6 levels in patients with COPD were elevated compared with HVs (1.5±1.06 pg/mL [mean ±1 SD] vs 0.4±0.24 pg/mL). LPS challenge increased the circulating IL-6 levels (7.5±2.72 pg/mL) 9 hours post challenge. CONCLUSIONS: This study shows the ability to quantify 'whole lung' neutrophil accumulation in HVs following LPS inhalation and in subjects with COPD using autologous radiolabelled neutrophils and SPECT/CT imaging. Moreover, the reproducibility observed supports the feasibility of using this approach to determine the efficacy of therapeutic agents aimed at altering neutrophil migration to the lungs.


Subject(s)
Lung/diagnostic imaging , Neutrophils/physiology , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Aged , Biomarkers/blood , Female , Humans , Interleukin-6/blood , Lipopolysaccharides , Male , Middle Aged , Neutrophil Infiltration/drug effects , Neutrophil Infiltration/physiology , Pulmonary Disease, Chronic Obstructive/pathology , Reproducibility of Results , Single Photon Emission Computed Tomography Computed Tomography/methods , Technetium
7.
Br Med Bull ; 127(1): 69-82, 2018 09 01.
Article in English | MEDLINE | ID: mdl-30052802

ABSTRACT

Introduction: Radionuclides for leucocyte kinetic studies have progressed from non-gamma emitting cell-labelling radionuclides through gamma emitting nuclides that allow imaging of leucocyte kinetics, to the next goal of positron emission tomography (PET). Sources of data: Mostly the authors' own studies, following on from studies of the early pioneers. Areas of controversy: From early imaging studies, it appeared that the majority of the marginated granulocyte pool was located in the lungs. However, later work disputed this by demonstrating the exquisite sensitivity of granulocytes to ex vivo isolation and labelling, and that excessive lung activity is artefactual. Areas of agreement: Following refinement of labelling techniques, it was shown that the majority of marginated granulocytes are located in the spleen and bone marrow. The majority of leucocytes have a pulmonary vascular transit time only a few seconds longer than erythrocytes. The minority showing slow transit, ~5% in healthy persons, is increased in systemic inflammatory disorders that cause neutrophil priming and loss of deformability. Using a range of imaging techniques, including gamma camera imaging, whole-body counting and single photon-emission computerized tomography, labelled granulocytes were subsequently used to image pulmonary trafficking in lobar pneumonia, bronchiectasis, chronic obstructive pulmonary disease and adult respiratory distress syndrome. Growing points: More recently, eosinophils have been separated in pure form using magnetic bead technology for the study of eosinophil trafficking in asthma. Areas timely for developing research: These include advancement of eosinophil imaging, development of monocyte labelling, development of cell labelling with PET tracers and the tracking of lymphocytes.


Subject(s)
Granulocytes/metabolism , Isotope Labeling , Leukocytes , Lung Diseases/diagnostic imaging , Positron-Emission Tomography/methods , Radioisotopes/metabolism , Humans , Leukocytes/physiology , Lung Diseases/pathology
8.
Elife ; 72018 01 13.
Article in English | MEDLINE | ID: mdl-29331015

ABSTRACT

Blood is arguably the most important bodily fluid and its analysis provides crucial health status information. A first routine measure to narrow down diagnosis in clinical practice is the differential blood count, determining the frequency of all major blood cells. What is lacking to advance initial blood diagnostics is an unbiased and quick functional assessment of blood that can narrow down the diagnosis and generate specific hypotheses. To address this need, we introduce the continuous, cell-by-cell morpho-rheological (MORE) analysis of diluted whole blood, without labeling, enrichment or separation, at rates of 1000 cells/sec. In a drop of blood we can identify all major blood cells and characterize their pathological changes in several disease conditions in vitro and in patient samples. This approach takes previous results of mechanical studies on specifically isolated blood cells to the level of application directly in blood and adds a functional dimension to conventional blood analysis.


Subject(s)
Blood Cells/cytology , Blood Cells/physiology , Cytological Techniques/methods , Diagnostic Tests, Routine/methods , Single-Cell Analysis/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...