Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Alzheimers Dement ; 20(3): 1851-1867, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38146099

ABSTRACT

INTRODUCTION: In this study, we leverage proteomic techniques to identify communities of proteins underlying Alzheimer's disease (AD) risk among clinically unimpaired (CU) older adults. METHODS: We constructed a protein co-expression network using 3869 cerebrospinal fluid (CSF) proteins quantified by SomaLogic, Inc., in a cohort of participants along the AD clinical spectrum. We then replicated this network in an independent cohort of CU older adults and related these modules to clinically-relevant outcomes. RESULTS: We discovered modules enriched for phosphorylation and ubiquitination that were associated with abnormal amyloid status, as well as p-tau181 (M4: ß = 2.44, p < 0.001, M7: ß = 2.57, p < 0.001) and executive function performance (M4: ß = -2.00, p = 0.005, M7: ß = -2.39, p < 0.001). DISCUSSION: In leveraging CSF proteomic data from individuals spanning the clinical spectrum of AD, we highlight the importance of post-translational modifications for early cognitive and pathological changes.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/pathology , tau Proteins/genetics , tau Proteins/cerebrospinal fluid , Proteomics , Biomarkers/cerebrospinal fluid , Protein Processing, Post-Translational , Cognition , Amyloid beta-Peptides/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid
2.
Neurobiol Aging ; 122: 88-106, 2023 02.
Article in English | MEDLINE | ID: mdl-36516558

ABSTRACT

Cognitive tests sensitive to the integrity of the medial temporal lobe (MTL), such as mnemonic discrimination of perceptually similar stimuli, may be useful early markers of risk for cognitive decline in older populations. Perceptual discrimination of stimuli with overlapping features also relies on MTL but remains relatively unexplored in this context. We assessed mnemonic discrimination in two test formats (Forced Choice, Yes/No) and perceptual discrimination of objects and scenes in 111 community-dwelling older adults at different risk status for cognitive impairment based on neuropsychological screening. We also investigated associations between performance and MTL sub-region volume and thickness. The at-risk group exhibited reduced entorhinal thickness and impaired perceptual and mnemonic discrimination. Perceptual discrimination impairment partially explained group differences in mnemonic discrimination and correlated with entorhinal thickness. Executive dysfunction accounted for Yes/No deficits in at-risk adults, demonstrating the importance of test format for the interpretation of memory decline. These results suggest that perceptual discrimination tasks may be useful tools for detecting incipient cognitive impairment related to reduced MTL integrity in nonclinical populations.


Subject(s)
Cognitive Dysfunction , Temporal Lobe , Humans , Aged , Memory , Cognitive Dysfunction/diagnosis , Discrimination, Psychological , Magnetic Resonance Imaging , Neuropsychological Tests
3.
Cell ; 185(26): 5028-5039.e13, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36516855

ABSTRACT

Cerebrospinal fluid (CSF) contains a tightly regulated immune system. However, knowledge is lacking about how CSF immunity is altered with aging or neurodegenerative disease. Here, we performed single-cell RNA sequencing on CSF from 45 cognitively normal subjects ranging from 54 to 82 years old. We uncovered an upregulation of lipid transport genes in monocytes with age. We then compared this cohort with 14 cognitively impaired subjects. In cognitively impaired subjects, downregulation of lipid transport genes in monocytes occurred concomitantly with altered cytokine signaling to CD8 T cells. Clonal CD8 T effector memory cells upregulated C-X-C motif chemokine receptor 6 (CXCR6) in cognitively impaired subjects. The CXCR6 ligand, C-X-C motif chemokine ligand 16 (CXCL16), was elevated in the CSF of cognitively impaired subjects, suggesting CXCL16-CXCR6 signaling as a mechanism for antigen-specific T cell entry into the brain. Cumulatively, these results reveal cerebrospinal fluid immune dysregulation during healthy brain aging and cognitive impairment.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , Humans , Middle Aged , Aged , Aged, 80 and over , Ligands , Brain , Aging , Lipids , Biomarkers
4.
Alzheimers Res Ther ; 14(1): 172, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36371232

ABSTRACT

BACKGROUND: The recent promise of disease-modifying therapies for Alzheimer's disease (AD) has reinforced the need for accurate biomarkers for early disease detection, diagnosis and treatment monitoring. Advances in the development of novel blood-based biomarkers for AD have revealed that plasma levels of tau phosphorylated at various residues are specific and sensitive to AD dementia. However, the currently available tests have shortcomings in access, throughput, and scalability that limit widespread implementation. METHODS: We evaluated the diagnostic and prognostic performance of a high-throughput and fully-automated Lumipulse plasma p-tau181 assay for the detection of AD. Plasma from older clinically unimpaired individuals (CU, n = 463) and patients with mild cognitive impairment (MCI, n = 107) or AD dementia (n = 78) were obtained from the longitudinal Stanford University Alzheimer's Disease Research Center (ADRC) and the Stanford Aging and Memory Study (SAMS) cohorts. We evaluated the discriminative accuracy of plasma p-tau181 for clinical AD diagnosis, association with amyloid ß peptides and p-tau181 concentrations in CSF, association with amyloid positron emission tomography (PET), and ability to predict longitudinal cognitive and functional change. RESULTS: The assay showed robust performance in differentiating AD from control participants (AUC 0.959, CI: 0.912 to 0.990), and was strongly associated with CSF p-tau181, CSF Aß42/Aß40 ratio, and amyloid-PET global SUVRs. Associations between plasma p-tau181 with CSF biomarkers were significant when examined separately in Aß+ and Aß- groups. Plasma p-tau181 significantly increased over time in CU and AD diagnostic groups. After controlling for clinical diagnosis, age, sex, and education, baseline plasma p-tau181 predicted change in MoCA overall and change in CDR Sum of Boxes in the AD group over follow-up of up to 5 years. CONCLUSIONS: This fully-automated and available blood-based biomarker assay therefore may be useful for early detection, diagnosis, prognosis, and treatment monitoring of AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides , Biomarkers , Cognitive Dysfunction/diagnostic imaging , tau Proteins
5.
Neuroimage ; 262: 119584, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36007822

ABSTRACT

The thalamus is a central integration structure in the brain, receiving and distributing information among the cerebral cortex, subcortical structures, and the peripheral nervous system. Prior studies clearly show that the thalamus atrophies in cognitively unimpaired aging. However, the thalamus is comprised of multiple nuclei involved in a wide range of functions, and the age-related atrophy of individual thalamic nuclei remains unknown. Using a recently developed automated method of identifying thalamic nuclei (3T or 7T MRI with white-matter-nulled MPRAGE contrast and THOMAS segmentation) and a cross-sectional design, we evaluated the age-related atrophy rate for 10 thalamic nuclei (AV, CM, VA, VLA, VLP, VPL, pulvinar, LGN, MGN, MD) and an epithalamic nucleus (habenula). We also used T1-weighted images with the FreeSurfer SAMSEG segmentation method to identify and measure age-related atrophy for 11 extra-thalamic structures (cerebral cortex, cerebral white matter, cerebellar cortex, cerebellar white matter, amygdala, hippocampus, caudate, putamen, nucleus accumbens, pallidum, and lateral ventricle). In 198 cognitively unimpaired participants with ages spanning 20-88 years, we found that the whole thalamus atrophied at a rate of 0.45% per year, and that thalamic nuclei had widely varying age-related atrophy rates, ranging from 0.06% to 1.18% per year. A functional grouping analysis revealed that the thalamic nuclei involved in cognitive (AV, MD; 0.53% atrophy per year), visual (LGN, pulvinar; 0.62% atrophy per year), and auditory/vestibular (MGN; 0.64% atrophy per year) functions atrophied at significantly higher rates than those involved in motor (VA, VLA, VLP, and CM; 0.37% atrophy per year) and somatosensory (VPL; 0.32% atrophy per year) functions. A proximity-to-CSF analysis showed that the group of thalamic nuclei situated immediately adjacent to CSF atrophied at a significantly greater atrophy rate (0.59% atrophy per year) than that of the group of nuclei located farther from CSF (0.36% atrophy per year), supporting a growing hypothesis that CSF-mediated factors contribute to neurodegeneration. We did not find any significant hemispheric differences in these rates of change for thalamic nuclei. Only the CM thalamic nucleus showed a sex-specific difference in atrophy rates, atrophying at a greater rate in male versus female participants. Roughly half of the thalamic nuclei showed greater atrophy than all extra-thalamic structures examined (0% to 0.54% per year). These results show the value of white-matter-nulled MPRAGE imaging and THOMAS segmentation for measuring distinct thalamic nuclei and for characterizing the high and heterogeneous atrophy rates of the thalamus and its nuclei across the adult lifespan. Collectively, these methods and results advance our understanding of the role of thalamic substructures in neurocognitive and disease-related changes that occur with aging.


Subject(s)
Thalamic Nuclei , Thalamus , Adult , Aged , Aged, 80 and over , Aging , Atrophy/pathology , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Thalamic Nuclei/diagnostic imaging , Thalamus/diagnostic imaging , Thalamus/pathology , Young Adult
6.
Neurology ; 96(10): e1470-e1481, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33408146

ABSTRACT

OBJECTIVE: To determine whether memory tasks with demonstrated sensitivity to hippocampal function can detect variance related to preclinical Alzheimer disease (AD) biomarkers, we examined associations between performance in 3 memory tasks and CSF ß-amyloid (Aß)42/Aß40 and phosopho-tau181 (p-tau181) in cognitively unimpaired older adults (CU). METHODS: CU enrolled in the Stanford Aging and Memory Study (n = 153; age 68.78 ± 5.81 years; 94 female) completed a lumbar puncture and memory assessments. CSF Aß42, Aß40, and p-tau181 were measured with the automated Lumipulse G system in a single-batch analysis. Episodic memory was assayed using a standardized delayed recall composite, paired associate (word-picture) cued recall, and a mnemonic discrimination task that involves discrimination between studied "target" objects, novel "foil" objects, and perceptually similar "lure" objects. Analyses examined cross-sectional relationships among memory performance, age, and CSF measures, controlling for sex and education. RESULTS: Age and lower Aß42/Aß40 were independently associated with elevated p-tau181. Age, Aß42/Aß40, and p-tau181 were each associated with (1) poorer associative memory and (2) diminished improvement in mnemonic discrimination performance across levels of decreased task difficulty (i.e., target-lure similarity). P-tau mediated the effect of Aß42/Aß40 on memory. Relationships between CSF proteins and delayed recall were similar but nonsignificant. CSF Aß42 was not significantly associated with p-tau181 or memory. CONCLUSIONS: Tests designed to tax hippocampal function are sensitive to subtle individual differences in memory among CU and correlate with early AD-associated biomarker changes in CSF. These tests may offer utility for identifying CU with preclinical AD pathology.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Hippocampus/physiopathology , Memory Disorders/cerebrospinal fluid , Memory Disorders/psychology , Aged , Aged, 80 and over , Aging/psychology , Alzheimer Disease/physiopathology , Alzheimer Disease/psychology , Amyloid beta-Peptides/cerebrospinal fluid , Association Learning , Cross-Sectional Studies , Cues , Discrimination, Psychological , Female , Humans , Male , Memory , Memory Disorders/physiopathology , Memory, Episodic , Mental Recall , Middle Aged , Neuropsychological Tests , Peptide Fragments/cerebrospinal fluid , Psychomotor Performance , tau Proteins/cerebrospinal fluid
7.
Cognition ; 209: 104556, 2021 04.
Article in English | MEDLINE | ID: mdl-33450438

ABSTRACT

Mnemonic discrimination deficits, or impaired ability to discriminate between similar events in memory, is a hallmark of cognitive aging, characterised by a stark age-related increase in false recognition. While individual differences in mnemonic discrimination have gained attention due to potential relevance for early detection of Alzheimer's disease, our understanding of the component processes that contribute to variability in task performance across older adults remains limited. The present investigation explores the roles of representational quality, indexed by perceptual discrimination of objects and scenes with overlapping features, and strategic retrieval ability, indexed by standardised tests of executive function, to mnemonic discrimination in a large cohort of older adults (N=124). We took an individual differences approach and characterised the contributions of these factors to performance under Forced Choice (FC) and Yes/No (YN) recognition memory formats, which place different demands on strategic retrieval. Performance in both test formats declined with age. Accounting for age, individual differences in FC memory performance were best explained by perceptual discrimination score, whereas YN memory performance was best explained by executive functions. A linear mixed model and dominance analyses confirmed the relatively greater importance of perceptual discrimination over executive functioning for FC performance, while the opposite was true for YN. These findings highlight parallels between perceptual and mnemonic discrimination in aging, the importance of considering demands on executive functions in the context of mnemonic discrimination, and the relevance of test format for modulating the impact of these factors on performance in older adults.


Subject(s)
Executive Function , Individuality , Aged , Aging , Discrimination, Psychological , Humans , Memory , Neuropsychological Tests , Recognition, Psychology
8.
Eur J Nucl Med Mol Imaging ; 48(7): 2233-2244, 2021 07.
Article in English | MEDLINE | ID: mdl-32572562

ABSTRACT

PURPOSE: In vivo measurement of the spatial distribution of neurofibrillary tangle pathology is critical for early diagnosis and disease monitoring of Alzheimer's disease (AD). METHODS: Forty-nine participants were scanned with 18F-PI-2620 PET to examine the distribution of this novel PET ligand throughout the course of AD: 36 older healthy controls (HC) (age range 61 to 86), 11 beta-amyloid+ (Aß+) participants with cognitive impairment (CI; clinical diagnosis of either mild cognitive impairment or AD dementia, age range 57 to 86), and 2 participants with semantic variant primary progressive aphasia (svPPA, age 66 and 78). Group differences in brain regions relevant in AD (medial temporal lobe, posterior cingulate cortex, and lateral parietal cortex) were examined using standardized uptake value ratios (SUVRs) normalized to the inferior gray matter of the cerebellum. RESULTS: SUVRs in target regions were relatively stable 60 to 90 min post-injection, with the exception of very high binders who continued to show increases over time. Robust elevations in 18F-PI-2620 were observed between HC and Aß+ CI across all AD regions. Within the HC group, older age was associated with subtle elevations in target regions. Mildly elevated focal uptake was observed in the anterior temporal pole in one svPPA patient. CONCLUSION: Preliminary results suggest strong differences in the medial temporal lobe and cortical regions known to be impacted in AD using 18F-PI-2620 in patients along the AD trajectory. This work confirms that 18F-PI-2620 holds promise as a tool to visualize tau aggregations in AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Aged , Aged, 80 and over , Aging , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides , Brain/diagnostic imaging , Brain/metabolism , Carbolines , Humans , Middle Aged , Positron-Emission Tomography , tau Proteins/metabolism
9.
Elife ; 92020 05 29.
Article in English | MEDLINE | ID: mdl-32469308

ABSTRACT

Age-related episodic memory decline is characterized by striking heterogeneity across individuals. Hippocampal pattern completion is a fundamental process supporting episodic memory. Yet, the degree to which this mechanism is impaired with age, and contributes to variability in episodic memory, remains unclear. We combine univariate and multivariate analyses of fMRI data from a large cohort of cognitively normal older adults (N=100) to measure hippocampal activity and cortical reinstatement during retrieval of trial-unique associations. Trial-wise analyses revealed that (a) hippocampal activity scaled with reinstatement strength, (b) cortical reinstatement partially mediated the relationship between hippocampal activity and associative retrieval, (c) older age weakened cortical reinstatement and its relationship to memory behaviour. Moreover, individual differences in the strength of hippocampal activity and cortical reinstatement explained unique variance in performance across multiple assays of episodic memory. These results indicate that fMRI indices of hippocampal pattern completion explain within- and across-individual memory variability in older adults.


Subject(s)
Aging/physiology , Cerebral Cortex/physiology , Hippocampus/physiology , Memory, Episodic , Aged , Aged, 80 and over , Cerebral Cortex/diagnostic imaging , Female , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Mental Recall/physiology , Middle Aged
10.
Neurobiol Aging ; 84: 50-60, 2019 12.
Article in English | MEDLINE | ID: mdl-31491595

ABSTRACT

Mounting behavioral evidence suggests that declines in both representational quality and controlled retrieval processes contribute to episodic memory decline with age. The present study sought neural evidence for age-related change in these factors by measuring neural differentiation during encoding of paired associates and changes in regional blood oxygenation level-dependent activity and functional connectivity during retrieval conditions that placed low (intact pairs) and high (recombined pairs) demands on controlled retrieval processes. Pattern similarity analysis revealed age-related declines in the differentiation of stimulus representations at encoding, manifesting as both reduced pattern similarity between closely related events and increased pattern similarity between distinct events. During retrieval, both groups increased recruitment of areas within the core recollection network when endorsing studied pairs, including the hippocampus and angular gyrus. In contrast, only younger adults increased recruitment of, and hippocampal connectivity with, lateral prefrontal regions during correct rejections of recombined pairs. These results provide evidence for age-related changes in representational quality and in the neural mechanisms supporting memory retrieval under conditions of high, but not low, control demand.


Subject(s)
Aging/physiology , Memory, Episodic , Mental Recall
11.
Learn Mem ; 25(1): 31-44, 2018 01.
Article in English | MEDLINE | ID: mdl-29246979

ABSTRACT

The thalamic nuclei are thought to play a critical role in recognition memory. Specifically, the anterior thalamic nuclei and medial dorsal nuclei may serve as critical output structures in distinct hippocampal and perirhinal cortex systems, respectively. Existing evidence indicates that damage to the anterior thalamic nuclei leads to impairments in hippocampal-dependent tasks. However, evidence for the opposite pattern following medial dorsal nuclei damage has not yet been identified. In the present study, we investigated recognition memory in NC, a patient with relatively selective medial dorsal nuclei damage, using two object recognition tests with similar foils: a yes/no (YN) test that requires the hippocampus, and a forced choice corresponding test (FCC) that is supported by perirhinal cortex. NC performed normally in the YN test, but was impaired in the FCC test. Critically, FCC performance was impaired only when the study-test delay period was filled with interference. We interpret these results in the context of the representational-hierarchical model, which predicts that memory deficits following damage to the perirhinal system arise due to increased vulnerability to interference. These data provide the first evidence for selective deficits in a task that relies on perirhinal output following damage to the medial dorsal nuclei, providing critical evidence for dissociable thalamic contributions to recognition memory.


Subject(s)
Memory Disorders/physiopathology , Recognition, Psychology/physiology , Thalamic Nuclei/injuries , Thalamic Nuclei/physiopathology , Female , Humans , Memory Disorders/diagnostic imaging , Models, Neurological , Models, Psychological , Neuropsychological Tests , Stroke/diagnostic imaging , Stroke/physiopathology , Stroke/psychology , Thalamic Nuclei/diagnostic imaging , Thalamic Nuclei/physiology , Young Adult
12.
J Exp Psychol Learn Mem Cogn ; 43(12): 1883-1897, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28530412

ABSTRACT

In a Yes/No object recognition memory test with similar lures, older adults typically exhibit elevated rates of false recognition. However, the contributions of impaired retrieval, relative to reduced availability of target details, are difficult to disentangle using such a test. The present investigation sought to decouple these factors by comparing performance on a Yes/No (YN) test to that on a Forced Choice (FC) test, which minimizes demands on strategic retrieval processes, enabling a more direct measure of the availability of object details. Older adults exhibited increased lure false recognition across test formats (Experiment 1), suggesting a decline in the availability of object details contributes to deficits in performance. Manipulating interference by varying the number of objects studied selectively enhanced performance in the FC test, resulting in matched performance across groups, whereas age differences in YN performance persisted (Experiment 2), indicating an additional contribution of impaired strategic retrieval. Consistent with differential sensitivity of test format to strategic retrieval and the quality of stimulus representations among older adults, variability in the quality of object representations, measured using a perceptual discrimination task, was selectively related to FC performance. In contrast, variability in memory control processes, as measured with tests of recall and executive function, was related to performance across test formats. These results suggest that both declines in the availability of object details and impaired retrieval of object details contribute to elevated rates of lure false recognition with age, and highlight the utility of test format for dissociating these factors in memory-impaired populations. (PsycINFO Database Record


Subject(s)
Aging , Discrimination, Psychological/physiology , Mental Recall/physiology , Recognition, Psychology/physiology , Repression, Psychology , Adolescent , Adult , Aged , Aged, 80 and over , Analysis of Variance , Choice Behavior/physiology , Executive Function/physiology , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Photic Stimulation , Reaction Time/physiology , Visual Perception/physiology , Young Adult
13.
Psychol Aging ; 30(2): 324-33, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25961877

ABSTRACT

Self-referential processing has been identified as a possible tool for supporting effective encoding processes in the elderly population. However, the importance of self-reference per se, relative to the increase in meaningful elaboration normally associated with self-reference instructions, remains unclear. The present study sought to explore this issue further by examining self-referential encoding strategies that inherently involve more extensive stimulus elaboration: episodic autobiographical memory (AM) retrieval and semantic AM retrieval. These were compared with an analogous task involving retrieval of general semantic knowledge, as well as traditional binary self-referential and semantic encoding judgments. We found that both AM retrieval and general semantic retrieval at encoding resulted in substantial enhancements to recall and recognition memory of concrete nouns relative to binary encoding judgments across both age groups. Furthermore, older adults exhibited larger benefits from this additional elaboration than did younger adults, leading to elimination of age-related deficits in recognition memory. However, younger adults showed an additional boost to subsequent memory following episodic, relative to semantic, AM retrieval during free recall that was not exhibited by older adults. This may be because of greater demands on frontally mediated control processes and cognitive resources associated with the use of this strategy. Taken together, the results suggest that the mnemonic benefits associated with self-referential processing vary substantially depending on the specific nature of the encoding strategy, and suggest that, under certain conditions, semantic processing and self-referential processing are equally effective in mitigating age-related deficits in memory performance.


Subject(s)
Aging/psychology , Memory, Episodic , Mental Recall/physiology , Semantics , Adolescent , Adult , Aged , Aged, 80 and over , Aging/physiology , Cognition/physiology , Female , Frontal Lobe/physiology , Humans , Judgment , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...