Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacogenomics ; 24(4): 199-206, 2023 03.
Article in English | MEDLINE | ID: mdl-36946317

ABSTRACT

Aim: We previously conducted exome-wide association study in acute lymphoblastic leukemia patients and identified association of five SNPs with asparaginase-related thrombosis. Here we aimed to replicate these findings in an independent patient cohort and through analyses in vitro. Patients & methods: SNPs located in IL16, MYBBP1A, PKD2L1, RIN3 and MPEG1 genes were analyzed in patients receiving Dana-Farber Cancer Institute acute lymphoblastic leukemia treatment protocols 05-001 and 11-001. Thrombophilia-related variations were also analysed. Results: IL16 rs11556218 conferred higher risk of thrombosis and higher in vitro sensitivity to asparaginase. The association was modulated by the treatment protocol, risk group and immunophenotype. A crosstalk between factor V Leiden, non-O blood groups and higher risk of thrombosis was also seen. Conclusion: IL16 and factor V Leiden variations are implicated in asparaginase-related thrombosis.


This study looked at how certain genetic variations are related to a higher risk of blood clots in children with a type of cancer called acute lymphoblastic leukemia who are receiving a certain treatment (asparaginase). The study found that one specific genetic variation (IL16 rs11556218) was linked to a higher risk of blood clots (thrombosis), and that this risk was influenced by disease and treatment features. The study also found that a certain genetic variation (factor V Leiden), which makes blood more likely to clot, and blood type (non-O) were linked to a higher risk of thrombosis. The conclusion of this study is that genetic variations may play a role in blood clots in children with acute lymphoblastic leukemia receiving asparaginase, and if further confirmed, these variations can serve to advance personalized treatment strategies.


Subject(s)
Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Thrombosis , Humans , Asparaginase/adverse effects , Interleukin-16/therapeutic use , Antineoplastic Agents/therapeutic use , Factor V/genetics , Factor V/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications , Thrombosis/chemically induced , Thrombosis/genetics , DNA-Binding Proteins , Transcription Factors , RNA-Binding Proteins , Receptors, Cell Surface , Calcium Channels
2.
Am J Obstet Gynecol ; 228(4): 467.e1-467.e16, 2023 04.
Article in English | MEDLINE | ID: mdl-36244408

ABSTRACT

BACKGROUND: Preterm birth is the leading cause of neonatal morbidity and mortality. Studies have shown that interleukin 1 plays a major role in the pathophysiology of preterm birth by inducing the production of proinflammatory mediators and uterine activation proteins leading to labor. More importantly, uteroplacental inflammation, associated with preterm birth parturition pathways, is detrimental to fetal tissues and leads to long-term sequelae. Our group has developed an allosteric antagonist of the interleukin 1 receptor, rytvela, found to be potent and safe in preventing preterm birth by suppressing inflammation via the inhibition of the mitogen-activated protein kinase pathway while preserving the Nuclear factor kappa B pathway (important in immune vigilance). Rytvela has been shown to inhibit inflammatory up-regulation and uterine activation while preserving fetal development. OBJECTIVE: This study aimed to further the preclinical development of rytvela by evaluating its optimal dose and minimal duration of treatment to inhibit the inflammatory cascade, prolong gestation, and promote neonatal outcomes. STUDY DESIGN: Pregnant CD-1 mice were administered with lipopolysaccharide (10 µg, intraperitoneal administration) or interleukin 1 (1 µg/kg, intrauterine administration) on gestational day 16 to induce preterm labor. Rytvela was administered at different doses (0.1, 0.5, 1.0, 2.0, 4.0 mg/kg/d subcutaneously) from gestational days 16 to 18.5. To evaluate the minimal duration of treatment, the mice were administered with rytvela (2 mg/kg/d subcutaneously) for 24, 36, or 48 hours. The rate of prematurity (gestational day <18.5) and neonate survival and weight were evaluated. Gestational tissues were collected at gestational day 17.5 to quantify cytokines, proinflammatory mediators, and uterine activating proteins by real-time quantitative polymerase chain reaction and enzyme-linked immunosorbent assay. The neonatal lungs and intestines were collected from postnatal days 5 to 7 and analyzed by histology. RESULTS: Rytvela exhibited a dose-response profile and achieved maximum efficacy at a dose of 2 mg/kg/d by reducing 70% of lipopolysaccharide-induced preterm births and 60% of interleukin 1ß-induced preterm births. In addition, rytvela attained maximum efficacy at a dose of 1 mg/kg/d by increasing neonate survival by up to 65% in both models of preterm birth. Rytvela protected fetuses from inflammatory insult as of 24 hours, preserving lung and intestinal integrity, and prevented preterm birth and fetal mortality by 60% and 50%, respectively, as of 36 hours of treatment. CONCLUSION: The maximum efficacy of rytvela was achieved at 2 mg/kg/d with improved birth outcomes and prevented inflammatory up-regulation upon 36 hours (only) of treatment. Rytvela exhibited desirable properties for the safe prevention of preterm birth and fetal protection.


Subject(s)
Premature Birth , Infant, Newborn , Pregnancy , Humans , Female , Animals , Mice , Premature Birth/prevention & control , Lipopolysaccharides/adverse effects , Fetus , Inflammation , Anti-Inflammatory Agents , Interleukin-1
3.
Cells ; 11(14)2022 07 13.
Article in English | MEDLINE | ID: mdl-35883628

ABSTRACT

The GPCR SUCNR1/GPR91 exerts proangiogenesis upon stimulation with the Krebs cycle metabolite succinate. GPCR signaling depends on the surrounding environment and intracellular localization through location bias. Here, we show by microscopy and by cell fractionation that in neurons, SUCNR1 resides at the endoplasmic reticulum (ER), while being fully functional, as shown by calcium release and the induction of the expression of the proangiogenic gene for VEGFA. ER localization was found to depend upon N-glycosylation, particularly at position N8; the nonglycosylated mutant receptor localizes at the plasma membrane shuttled by RAB11. This SUCNR1 glycosylation is physiologically regulated, so that during hypoxic conditions, SUCNR1 is deglycosylated and relocates to the plasma membrane. Downstream signal transduction of SUCNR1 was found to activate the prostaglandin synthesis pathway through direct interaction with COX-2 at the ER; pharmacologic antagonism of the PGE2 EP4 receptor (localized at the nucleus) was found to prevent VEGFA expression. Concordantly, restoring the expression of SUCNR1 in the retina of SUCNR1-null mice renormalized vascularization; this effect is markedly diminished after transfection of the plasma membrane-localized SUCNR1 N8A mutant, emphasizing that ER localization of the succinate receptor is necessary for proper vascularization. These findings uncover an unprecedented physiologic process where GPCR resides at the ER for signaling function.


Subject(s)
Receptors, G-Protein-Coupled , Succinic Acid , Animals , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Hypoxia , Mice , Receptors, G-Protein-Coupled/metabolism , Succinates , Succinic Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...