Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters











Publication year range
1.
Nat Nanotechnol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987650

ABSTRACT

Astrocytes are responsible for maintaining homoeostasis and cognitive functions through calcium signalling, a process that is altered in brain diseases. Current bioelectronic tools are designed to study neurons and are not suitable for controlling calcium signals in astrocytes. Here, we show that electrical stimulation of astrocytes using electrodes coated with graphene oxide and reduced graphene oxide induces respectively a slow response to calcium, mediated by external calcium influx, and a sharp one, exclusively due to calcium release from intracellular stores. Our results suggest that the different conductivities of the substrate influence the electric field at the cell-electrolyte or cell-material interfaces, favouring different signalling events in vitro and ex vivo. Patch-clamp, voltage-sensitive dye and calcium imaging data support the proposed model. In summary, we provide evidence of a simple tool to selectively control distinct calcium signals in brain astrocytes for straightforward investigations in neuroscience and bioelectronic medicine.

2.
Int J Pharm ; 623: 121888, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35716978

ABSTRACT

In this work keratin/poly(lactic acid) (PLA) 50/50 wt blend nanofibers with different loadings of graphene-oxide (GO) were prepared by electrospinning and tested as delivery systems of Rhodamine Blue (RhB), selected as a model of a drug. The effect of GO on the electrospinnability and drug release mechanism and kinetics was investigated. Rheological measurements carried out on the blend solutions revealed unsatisfactory compatibility between keratin and PLA under quiet condition. Accordingly, poor interfacial adhesion between the two phases was observed by SEM analysis of a film prepared by solution casting. On the contrary, keratin chains seem to rearrange under the flux conditions of the electrospinning process thus promoting better interfacial interactions between the two polymers, thereby enhancing their miscibility, which resulted in homogeneous and defect-free nanofibers. The loading of GO into the keratin/PLA solution contributes to increase its viscosity, its shear thinning behavior, and its conductivity. Accordingly, thinner and more homogeneous nanofibers resulted from solutions with a relatively high conductivity coupled with a pronounced shear thinning behavior. FTIR and DSC analyses have underlined, that while the PLA/GO interfacial interactions significantly compete with the PLA/keratin ones, there are no significant effects of GO on the structural organization of keratin in blend with the PLA. However, GO offers several advantages from the application point of view by slightly improving the mechanical properties of the electrospun mats and by slowing down the release of the model drug through the reduction of the matrix swelling.


Subject(s)
Graphite , Nanofibers , Graphite/chemistry , Keratins/chemistry , Nanofibers/chemistry , Polyesters/chemistry
3.
Sci Rep ; 12(1): 6035, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35410428

ABSTRACT

Resistive Field Grading Materials (RFGM) are used in critical regions in the electrical insulation system of high-voltage direct-current cable systems. Here, we describe a novel type of RFGM, based on a percolated network of zinc oxide (ZnO) tetrapods in a rubber matrix. The electrical conductivity of the composite increases by a factor of 108 for electric fields > 1 kV mm-1, as a result of the highly anisotropic shape of the tetrapods and their significant bandgap (3.37 eV). We demonstrate that charge transport at fields < 1 kV mm-1 is dominated by thermally activated hopping of charge carriers across spatially, as well as energetically, localized states at the ZnO-polymer interface. At higher electric fields (> 1 kV mm-1) band transport in the semiconductive tetrapods triggers a large increase in conductivity. These geometrically enhanced ZnO semiconductors outperform standard additives such as SiC particles and ZnO micro varistors, providing a new class of additives to achieve variable conductivity in high-voltage cable system applications.

4.
Nanoscale ; 13(8): 4390-4407, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33599662

ABSTRACT

Graphene nanosheets are mechanically strong but flexible, electrically conductive and bio-compatible. Thus, due to these unique properties, they are being intensively studied as materials for the next generation of neural interfaces. Most of the literature focused on optimizing the interface between these materials and neurons. However, one of the most common causes of implant failure is the adverse inflammatory reaction of glial cells. These cells are not, as previously considered, just passive and supportive cells, but play a crucial role in the physiology and pathology of the nervous system, and in the interaction with implanted electrodes. Besides providing structural support to neurons, glia are responsible for the modulation of synaptic transmission and control of central and peripheral homeostasis. Accordingly, knowledge on the interaction between glia and biomaterials is essential to develop new implant-based therapies for the treatment of neurological disorders, such as epilepsy, brain tumours, and Alzheimer's and Parkinson's disease. This work provides an overview of the emerging literature on the interaction of graphene-based materials with glial cells, together with a complete description of the different types of glial cells and problems associated with them. We believe that this description will be important for researchers working in materials science and nanotechnology to develop new active materials to interface, measure and stimulate these cells.


Subject(s)
Graphite , Neuroglia , Neurons , Synaptic Transmission
5.
NanoImpact ; 23: 100330, 2021 07.
Article in English | MEDLINE | ID: mdl-35559831

ABSTRACT

Given the wide variety of potential applications of graphene oxide (GO), its consequent release into the environment poses serious concerns on its safety. The future production and exploitation of graphene in the years to come should be guided by its specific chemical-physical characteristics. The unparalleled potential of single-cell mass cytometry (CyTOF) to dissect by high-dimensionality the specific immunological effects of nanomaterials, represents a turning point in nanotoxicology. It helps us to identify the safe graphene in terms of physical-chemical properties and therefore to direct its future safe production. Here we present a high-dimensional study to evaluate two historically indicated as key parameters for the safe exploitation: functionalization and dimension. The role of lateral dimension and the amino-functionalization of GO on their immune impact were here evaluated as synergistic players. To this end, we dissected the effects of GO, characterized by a large or small lateral size (GO 1.32 µm and GO 0.13 µm, respectively), and its amino-functionalized counterpart (GONH2 1.32 µm and GONH2 0.13 µm, respectively) on fifteen cell types of human primary peripheral blood mononuclear cells (PBMCs). We describe how the smallest later size not only evokes pronounced toxicity on the pool of PBMCs compared to larger GOs but also towards the distinct immune cell subpopulations, in particular on non-classical monocytes, plasmacytoid dendritic cells (pDCs), natural killer cells (NKs) and B cells. The amino-functionalization was able to improve the biocompatibility of classical and non-classical monocytes, pDCs, NKs, and B cells. Detailed single-cell analysis further revealed a complex interaction of all GOs with the immune cells, and in particular monocyte subpopulations, with different potency depending on their physicochemical properties. Overall, by high-dimensional profiling, our study demonstrates that the lateral dimension is an important factor modulating immune cells and specifically monocyte activation, but a proper surface functionalization is the dominant characteristic in its immune effects. In particular, the amino-functionalization can critically modify graphene impact dampening the immune cell activation. Our study can serve as a guide for the future broad production and use of graphene in our everyday life.


Subject(s)
Graphite , Nanostructures , Graphite/toxicity , Humans , Leukocytes, Mononuclear , Monocytes , Nanostructures/toxicity , Single-Cell Analysis
6.
Small ; 15(45): e1902699, 2019 11.
Article in English | MEDLINE | ID: mdl-31576668

ABSTRACT

Graphene oxide (GO) holds high promise for diagnostic and therapeutic applications in nanomedicine but reportedly displays immunotoxicity, underlining the need for developing functionalized GO with improved biocompatibility. This study describes adverse effects of GO and amino-functionalized GO (GONH2 ) during Caenorhabditis elegans development and ageing upon acute or chronic exposure. Chronic GO treatment throughout the C. elegans development causes decreased fecundity and a reduction of animal size, while acute treatment does not lead to any measurable physiological decline. However, RNA-Sequencing data reveal that acute GO exposure induces innate immune gene expression. The p38 MAP kinase, PMK-1, which is a well-established master regulator of innate immunity, protects C. elegans from chronic GO toxicity, as pmk-1 mutants show reduced tissue-functionality and facultative vivipary. In a direct comparison, GONH2 exposure does not cause detrimental effects in the wild type or in pmk-1 mutants, and the innate immune response is considerably less pronounced. This work establishes enhanced biocompatibility of amino-functionalized GO in a whole-organism, emphasizing its potential as a biomedical nanomaterial.


Subject(s)
Caenorhabditis elegans/drug effects , Graphite/adverse effects , Graphite/chemistry , Animals , Caenorhabditis elegans/immunology , Caenorhabditis elegans/metabolism , Immunity, Innate/drug effects , Immunity, Innate/physiology , MAP Kinase Signaling System/drug effects , Nanoparticles/adverse effects , Nanoparticles/chemistry , Nanostructures/adverse effects , Nanostructures/chemistry , p38 Mitogen-Activated Protein Kinases/metabolism
7.
Nanoscale ; 11(47): 22780-22787, 2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31577323

ABSTRACT

The availability of clean, pure water is a major challenge for the future of our society. 2-Dimensional nanosheets of GO seem promising as nanoporous adsorbent or filters for water purification; however, their processing in macroscopic filters is challenging, and their cost vs. standard polymer filters is too high. Here, we describe a novel approach to combine graphene oxide (GO) sheets with commercial polysulfone (PSU) membranes for improved removal of organic contaminants from water. The adsorption physics of contaminants on the PSU-GO composite follows Langmuir and Brunauer-Emmett-Teller (BET) models, with partial swelling and intercalation of molecules in between the GO layers. Such a mechanism, well-known in layered clays, has not been reported previously for graphene or GO. Our approach requires minimal amounts of GO, deposited directly on the surface of the polymer, followed by stabilization using microwaves or heat. The purification efficiency of the PSU-GO composites is significantly improved vs. benchmark commercial PSU, as demonstrated by the removal of two model contaminants, rhodamine B and ofloxacin. The excellent stability of the composite is confirmed by extensive (100 hours) filtration tests in commercial water cartridges.


Subject(s)
Graphite/chemistry , Microwaves , Nanotechnology/methods , Polymers/chemistry , Sulfones/chemistry , Water Purification/methods , Adsorption , Cost-Benefit Analysis , Materials Testing , Nanoparticles , Organic Chemicals/chemistry , Porosity , Wastewater , Water Pollutants, Chemical/isolation & purification , X-Ray Diffraction
8.
J Biomed Nanotechnol ; 14(1): 86-97, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29463367

ABSTRACT

Graphene has been found to be an excellent heat-conductor due to the high speed of acoustic phonons in its lattice. In this work, we examine in depth a commercial graphene-based waist protector which uses graphene as a heating element. By employing thermal imaging in tandem with Raman microscopy, the thermal characteristics and performance of this device is fully assessed. It will be shown that no pronounced variation in its function is observed up to 3 hours of continuous operation and that the device seems to work effectively as an IR emitter at low power consumption. Temperature fluctuations, associated with a decrease of its electrical resistance are observed after 12 hours uptime and a temperature difference of 15 °C was recorded after 5 days of uninterrupted operation. These effects are thought to be due to the loss of graphene/polymer adhesion resulting from thermal fatigue. Overall, it is demonstrated that graphene can indeed be incorporated as an effective and operational thermal heating system in similar biomedical devices.


Subject(s)
Equipment and Supplies , Graphite , Hot Temperature , Heating
9.
J Nanosci Nanotechnol ; 18(2): 1290-1295, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29448576

ABSTRACT

In this study we describe a simple and fast procedure for the covalent functionalization of pristine graphene with a pyrene-terminated alkylazide, transformed in a highly reactive radical by thermal activation. The functionalized graphene sheets showed enhanced dispersibility in organic solvents compared to the pristine ones, thus enhancing their solution processability and compatibility with solvents or polymers. The relative improvement of solubility estimated form the absorption spectra was ≈60% in CHCl3 and ≈1200% in THF. The obtained materials were characterized by optical absorption spectroscopy, photoemission spectroscopy, infrared spectroscopy and X-rays photoelectron spectroscopy. The presence of the pyrene photoemitting chromophore in the grafting unit allowed to monitor the successful grafting and to confirm the effectiveness of the alkylazide to improve graphene solubility even when present in small amounts on the graphene surface.

10.
Nanotechnology ; 28(17): 174001, 2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28367836

ABSTRACT

In this work glucose (G), α-cyclodextrin (α-CD) and sodium salt of carboxymethyl cellulose (CMCNa) are used as dispersing agents for graphene oxide (GO), exploring the influence of both saccharide units and geometric/steric hindrance on the rheological, thermal, wettability and electrochemical properties of a GO/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) nanocomposite. By acting on the saccharide-based additives, we can modulate the rheological, thermal, and wettability properties of the GO/PEDOT:PSS nanocomposite. Firstly, the influence of all the additives on the rheological behaviour of GO and PEDOT:PSS was investigated separately in order to understand the effect of the dispersing agent on both the components of the ternary nanocomposite, individually. Subsequently, steady shear and dynamic frequency tests were conducted on all the nanocomposite solutions, characterized by thermal, wettability and morphological analysis. Finally, the electrochemical properties of the GO/PEDOT composites with different dispersing agents for supercapacitors were investigated using cyclic voltammetry (CV). The CV results revealed that GO/PEDOT with glucose exhibited the highest specific capacitance among the systems investigated.

11.
ACS Nano ; 10(7): 7125-34, 2016 07 26.
Article in English | MEDLINE | ID: mdl-27299370

ABSTRACT

We describe a fast and versatile method to functionalize high-quality graphene with organic molecules by exploiting the synergistic effect of supramolecular and covalent chemistry. With this goal, we designed and synthesized molecules comprising a long aliphatic chain and an aryl diazonium salt. Thanks to the long chain, these molecules physisorb from solution onto CVD graphene or bulk graphite, self-assembling in an ordered monolayer. The sample is successively transferred into an aqueous electrolyte, to block any reorganization or desorption of the monolayer. An electrochemical impulse is used to transform the diazonium group into a radical capable of grafting covalently to the substrate and transforming the physisorption into a covalent chemisorption. During covalent grafting in water, the molecules retain the ordered packing formed upon self-assembly. Our two-step approach is characterized by the independent control over the processes of immobilization of molecules on the substrate and their covalent tethering, enabling fast (t < 10 s) covalent functionalization of graphene. This strategy is highly versatile and works with many carbon-based materials including graphene deposited on silicon, plastic, and quartz as well as highly oriented pyrolytic graphite.

12.
Nanoscale ; 8(12): 6739-53, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-26952635

ABSTRACT

Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the "double-faced" Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml(-1). Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and "green" routes to 3D reduced GO-metal composite materials.


Subject(s)
Graphite/chemistry , Metal Nanoparticles/chemistry , Oxides/chemistry , Protein Engineering/methods , Adsorption , Amino Acids/chemistry , Animals , Cysteine/chemistry , Gold/chemistry , Hydrogen-Ion Concentration , Ions , Methionine/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Microscopy, Electron, Scanning Transmission , Microscopy, Electron, Transmission , Oxidation-Reduction , Palladium/chemistry , Peroxiredoxins/chemistry , Schistosoma mansoni , Spectrophotometry, Ultraviolet , Sulfur/chemistry , Temperature , Thioglycolates/chemistry
13.
Small ; 11(32): 3985-94, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-25959808

ABSTRACT

Understanding human health risk associated with the rapidly emerging graphene-based nanomaterials represents a great challenge because of the diversity of applications and the wide range of possible ways of exposure to this type of materials. Herein, the biodegradation of graphene oxide (GO) sheets is reported by using myeloperoxidase (hMPO) derived from human neutrophils in the presence of a low concentration of hydrogen peroxide. The degradation capability of the enzyme on three different GO samples containing different degree of oxidation on their graphenic lattice, leading to a variable dispersibility in aqueous media is compared. hMPO fails in degrading the most aggregated GO, but succeeds to completely metabolize highly dispersed GO samples. The spectroscopy and microscopy analyses provide unambiguous evidence for the key roles played by hydrophilicity, negative surface charge, and colloidal stability of the aqueous GO in their biodegradation by hMPO catalysis.


Subject(s)
Graphite/chemistry , Oxides/chemistry , Peroxidase/metabolism , Biodegradation, Environmental , Humans , Particle Size , Spectrum Analysis, Raman
14.
Nanoscale ; 7(11): 4598-810, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25707682

ABSTRACT

We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

15.
Chem Commun (Camb) ; 50(86): 13117-20, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25224581

ABSTRACT

Scanning electrochemical microscopy (SECM) can image graphene oxide (GO) flakes on insulating and conducting substrates. The contrast between GO and the substrate is controlled by the electrostatic interactions that are established between the charges of the molecular redox mediator and the charges present in the sheet/substrate. SECM also allows quantitative measurement - at the nano/microscale - of the charge transfer kinetics between single monolayer sheets and agent molecules.


Subject(s)
Graphite/chemistry , Microscopy, Electrochemical, Scanning , Gold/chemistry , Kinetics , Oxides/chemistry , Silicon Compounds/chemistry
16.
Nanoscale ; 6(11): 5926-33, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24759898

ABSTRACT

The main advantage for applications of graphene and related 2D materials is that they can be produced on large scales by liquid phase exfoliation. The exfoliation process shall be considered as a particular fragmentation process, where the 2D character of the exfoliated objects will influence significantly fragmentation dynamics as compared to standard materials. Here, we used automatized image processing of Atomic Force Microscopy (AFM) data to measure, one by one, the exact shape and size of thousands of nanosheets obtained by exfoliation of an important 2D-material, boron nitride, and used different statistical functions to model the asymmetric distribution of nanosheet sizes typically obtained. Being the resolution of AFM much larger than the average sheet size, analysis could be performed directly at the nanoscale and at the single sheet level. We find that the size distribution of the sheets at a given time follows a log-normal distribution, indicating that the exfoliation process has a "typical" scale length that changes with time and that exfoliation proceeds through the formation of a distribution of random cracks that follow Poisson statistics. The validity of this model implies that the size distribution does not depend on the different preparation methods used, but is a common feature in the exfoliation of this material and thus probably for other 2D materials.

17.
Chempluschem ; 79(3): 439-446, 2014 Mar.
Article in English | MEDLINE | ID: mdl-31986611

ABSTRACT

A facile and efficient method based on electrochemistry for the production of graphene-based materials for electronics is demonstrated. Uncharged acetonitrile molecules are intercalated in graphite by electrochemical treatment, owing to the synergic action of perchlorate ions dissolved in acetonitrile. Then, acetonitrile molecules are decomposed with microwave irradiation, which causes gas production and rapid graphite exfoliation, with an increase in the graphite volume of up to 600 %. Upon further processing and purification, highly dispersible nanosheets are obtained that can be processed into thin layers by roll-to-roll transfer or into thicker electrodes with excellent capacitance stability upon extensive charging/discharging cycles. The good exfoliation yield (>50 % of monolayers), minimal oxidation damage and good electrochemical stability of the nanosheets obtained were confirmed by scanning force and electron microscopy, as well as Raman spectroscopy and galvanostatic analyses.

18.
Nanoscale ; 5(22): 11234-47, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24084792

ABSTRACT

Graphene oxide (GO) is attracting an ever-growing interest in different fields and applications. Not much is known about the possible impact of GO sheet lateral dimensions on their effects in vitro, especially on human primary cells. In an attempt to address this issue, we present a study to evaluate, how highly soluble 2-dimensional GO constituted of large or small flakes affects human monocyte derived macrophages (hMDM). For this purpose, the lateral size of GO was tuned using sonication and three samples were obtained. The non sonicated one presented large flakes (~1.32 µm) while sonication for 2 and 26 hours generated small (~0.27 µm) and very small (~0.13 µm) sheets of GO, respectively. Cell studies were then conducted to evaluate the cytotoxicity, the oxidative stress induction, the activation potential and the pro-inflammatory effects of these different types of GO at increasing concentrations. In comparison, the same experiments were run on murine intraperitoneal macrophages (mIPM). The interaction between GO and cells was further examined by TEM and Raman spectroscopy. Our data revealed that the GO sheet size had a significant impact on different cellular parameters (i.e. cellular viability, ROS generation, and cellular activation). Indeed, the more the lateral dimensions of GO were reduced, the higher were the cellular internalization and the effects on cellular functionality. Our data also revealed a particular interaction of GO flakes with the cellular membrane. In fact, a GO mask due to the parallel arrangement of the graphene sheets on the cellular surface was observed. Considering the mask effect, we have hypothesized that this particular contact between GO sheets and the cell membrane could either promote their internalization or isolate cells from their environment, thus possibly accounting for the following impact on cellular parameters.


Subject(s)
Graphite/chemistry , Macrophages/cytology , Animals , Cell Survival/drug effects , Cells, Cultured , Cytokines/metabolism , Graphite/toxicity , Humans , Macrophages/drug effects , Macrophages/metabolism , Mice , Monocytes/cytology , Oxidative Stress/drug effects , Oxides/chemistry , Reactive Oxygen Species/metabolism
19.
Nanoscale ; 5(10): 4205-16, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23467481

ABSTRACT

We study the mechanism of surface adsorption of organic dyes on graphene, and successive exfoliation in water of these dye-functionalized graphene sheets. A systematic, comparative study is performed on pyrenes functionalized with an increasing number of sulfonic groups. By combining experimental and modeling investigations, we find an unambiguous correlation between the graphene-dye interaction energy, the molecular structure and the amount of graphene flakes solubilized. The results obtained indicate that the molecular dipole is not important per se, but because it facilitates adsorption on graphene by a "sliding" mechanism of the molecule into the solvent layer, facilitating the lateral displacement of the water molecules collocated between the aromatic cores of the dye and graphene. While a large dipole and molecular asymmetry promote the adsorption of the molecule on graphene, the stability and pH response of the suspensions obtained depend on colloidal stabilization, with no significant influence of molecular charging and dipole.

20.
Adv Mater ; 25(3): 432-6, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-22851440

ABSTRACT

Tune it with light! Self-assembled monolayers on gold based on a chemisorbed novel azobenzene derivative with a perfluorinated terminal phenyl ring are prepared. The modified substrate shows a significant work function increase compared to the bare metal. The photo-conversion between trans and cis isomers chemisorbed on the surface shows great perspectives for being an accessible route to tune the gold properties by means of light.

SELECTION OF CITATIONS
SEARCH DETAIL