Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Innov Clin Neurosci ; 19(4-6): 78-86, 2022.
Article in English | MEDLINE | ID: mdl-35958968

ABSTRACT

Autism spectrum disorders (ASDs) are a group of neurodevelopmental pathologies characterized by social and communication deficits, for which treatments are limited. Cell therapies, including intrathecal (IT) administration of bone marrow (BM) mononuclear cells (BM-MNC), improves symptoms in patients with ASD. Twenty-four patients diagnosed with ASD, according to the Diagnostic and Statistical Manual of Mental Disorders Text Revision Fourth Edition (DSM-IV-TR) criteria, were autologously treated with IT BM-MNC, and the clinical effect was evaluated using the Childhood Autism Rating Scale (CARS) on Days 30 (n=24) and 180 (n=14) post-treatment. IT BM-MNC improved clinical outcomes by Day 30 (p=0.0039), and those benefits remained and were further accentuated by Day 180 post-treatment (n=14; p=<0.0001). Clinical benefit at Days 30 (p=0.001; r= -0.51) and 180 (p=0.01; r= -0.60) posttreatment positively correlated with the enrichment of a putative BM stem cell population expressing the cluster of differentiation 133+ (CD133+) surface marker.

2.
Aging (Albany NY) ; 13(19): 22710-22731, 2021 10 10.
Article in English | MEDLINE | ID: mdl-34628368

ABSTRACT

Cockayne syndrome (CS) is a rare, autosomal genetic disorder characterized by premature aging-like features, such as cachectic dwarfism, retinal atrophy, and progressive neurodegeneration. The molecular defect in CS lies in genes associated with the transcription-coupled branch of the nucleotide excision DNA repair (NER) pathway, though it is not yet clear how DNA repair deficiency leads to the multiorgan dysfunction symptoms of CS. In this work, we used a mouse model of severe CS with complete loss of NER (Csa-/-/Xpa-/-), which recapitulates several CS-related phenotypes, resulting in premature death of these mice at approximately 20 weeks of age. Although this CS model exhibits a severe progeroid phenotype, we found no evidence of in vitro endothelial cell dysfunction, as assessed by measuring population doubling time, migration capacity, and ICAM-1 expression. Furthermore, aortas from CX mice did not exhibit early senescence nor reduced angiogenesis capacity. Despite these observations, CX mice presented blood brain barrier disruption and increased senescence of brain endothelial cells. This was accompanied by an upregulation of inflammatory markers in the brains of CX mice, such as ICAM-1, TNFα, p-p65, and glial cell activation. Inhibition of neovascularization did not exacerbate neither astro- nor microgliosis, suggesting that the pro-inflammatory phenotype is independent of the neurovascular dysfunction present in CX mice. These findings have implications for the etiology of this disease and could contribute to the study of novel therapeutic targets for treating Cockayne syndrome patients.


Subject(s)
Cockayne Syndrome/genetics , Cockayne Syndrome/pathology , DNA-Binding Proteins/metabolism , Disease Models, Animal , Xeroderma Pigmentosum Group A Protein/metabolism , Aging/genetics , Aging/pathology , Animals , Blood-Brain Barrier , Brain/pathology , DNA Damage , DNA Repair/genetics , DNA Repair/physiology , DNA-Binding Proteins/genetics , Endothelial Cells/physiology , Mice , Mice, Knockout , Neuroglia , Neuroinflammatory Diseases , Xeroderma Pigmentosum Group A Protein/genetics
4.
J Surg Res ; 235: 216-222, 2019 03.
Article in English | MEDLINE | ID: mdl-30691797

ABSTRACT

BACKGROUND: Dietary restriction (DR), defined as reduced nutrient intake without malnutrition, is associated with longevity extension, improved glucose metabolism, and increased stress resistance, but also poor wound healing. Short-term preoperative DR followed by a return to normal feeding after surgery results in improved surgical outcomes in preclinical models. However, the effect of preoperative DR on wound healing and perioperative glucose homeostasis is currently unknown. Here, we tested the effects of two different preoperative DR regimens-protein restriction (PR) and methionine restriction (MR)-on wound healing and perioperative glucose homeostasis using an established murine model of wound healing in both nondiabetic and diabetic mice. MATERIALS AND METHODS: Surgical outcomes were tested using the McFarlane flap in nondiabetic and streptozotocin-induced diabetic mice. Short-term dietary preconditioning included 1 wk of PR or MR diet (1-2 wk) versus an isocaloric complete diet before surgery; all mice were returned to a complete diet postoperatively. Outcome measures of flap wound recovery included skin viability and laser Doppler imaging of flap perfusion and assessment of CD45+ cell infiltration. Glucose homeostasis was assessed by glucose tolerance testing and by perioperative glucose levels in the diabetic cohort. RESULTS: No significant differences were observed in percentage of viable skin, perfusion, or immune cell infiltration at 7-10 d after surgery in PR or MR mice compared with controls in healthy or diabetic mice. Preoperative glucose tolerance and postoperative glucose levels were however significantly improved by both PR and MR in diabetic mice. CONCLUSIONS: Short-term dietary preconditioning with PR or MR did not impair wound healing in nondiabetic or diabetic mice. However, both regimens reduced preoperative hyperglycemia in diabetic mice. Thus, brief preoperative dietary manipulations stand as strategies to potentially improve perioperative hyperglycemia with no deleterious effects on wound healing in mice.


Subject(s)
Diet, Protein-Restricted/adverse effects , Hyperglycemia/diet therapy , Methionine , Preoperative Care , Wound Healing , Animals , Diabetes Mellitus, Experimental/complications , Hyperglycemia/etiology , Male , Mice, Inbred C57BL
5.
Cell ; 173(1): 74-89.e20, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29570999

ABSTRACT

A decline in capillary density and blood flow with age is a major cause of mortality and morbidity. Understanding why this occurs is key to future gains in human health. NAD precursors reverse aspects of aging, in part, by activating sirtuin deacylases (SIRT1-SIRT7) that mediate the benefits of exercise and dietary restriction (DR). We show that SIRT1 in endothelial cells is a key mediator of pro-angiogenic signals secreted from myocytes. Treatment of mice with the NAD+ booster nicotinamide mononucleotide (NMN) improves blood flow and increases endurance in elderly mice by promoting SIRT1-dependent increases in capillary density, an effect augmented by exercise or increasing the levels of hydrogen sulfide (H2S), a DR mimetic and regulator of endothelial NAD+ levels. These findings have implications for improving blood flow to organs and tissues, increasing human performance, and reestablishing a virtuous cycle of mobility in the elderly.


Subject(s)
Aging , Hydrogen Sulfide/metabolism , NAD/metabolism , Animals , Endothelial Cells/cytology , Endothelial Cells/metabolism , Humans , Mice , Mice, Knockout , Microvessels/metabolism , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Neovascularization, Physiologic , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Physical Conditioning, Animal , RNA Interference , RNA, Small Interfering/metabolism , Receptors, Notch/metabolism , Signal Transduction , Sirtuin 1/antagonists & inhibitors , Sirtuin 1/genetics , Sirtuin 1/metabolism , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...