Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Perception ; 53(2): 75-92, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37946509

ABSTRACT

During coordinated flight and centrifugation, pilots show interindividual variability in perceived roll tilt. The study explored how this variability is related to perceptual and cognitive functions. Twelve pilots underwent three 6-min centrifugations on two occasions (G levels: 1.1G, 1.8G, and 2.5G; gondola tilts: 25°, 56°, and 66°). The subjective visual horizontal (SVH) was measured with an adjustable luminous line and the pilots gave estimates of experienced G level. Afterward, they were interrogated regarding the relationship between G level and roll tilt and adjusted the line to numerically mentioned angles. Generally, the roll tilt during centrifugation was underestimated, and there was a large interindividual variability. Both knowledge on the relationship between G level and bank angle, and ability to adjust the line according to given angles contributed to the prediction of SVH in a multiple regression model. However, in most cases, SVH was substantial smaller than predictions based on specific abilities.


Subject(s)
Pilots , Humans , Centrifugation
2.
J Vestib Res ; 33(1): 1-19, 2023.
Article in English | MEDLINE | ID: mdl-36442173

ABSTRACT

BACKGROUND: During a simulated coordinated turn in a gondola centrifuge, experienced pilots show a substantial inter-individual variability in visual measures of perceived roll tilt. Because of the centrifuge's small radius, the pattern of stimuli to the semicircular canals during acceleration of the centrifuge differs in certain respects from that of an aircraft entering a turn. OBJECTIVE: To explore whether these differences may be of significance for the pilot's roll- plane orientation and whether individual characteristics revealed in the centrifuge correspond to those during real flight. METHOD: 8 fixed-wing air-force pilots were tested in a centrifuge and a high-performance aircraft. The centrifuge was accelerated to 2 G (gondola inclination 60°) within 10 s. The duration at 2 G was 6 minutes. Similar profiles were created in the aircraft. The subjective visual horizontal (SVH) was measured using an adjustable luminous line in darkness. Each pilot was tested on three occasions: centrifuge (2 runs), aircraft (2 turns), centrifuge (2 runs). For each 2-G exposure, initial and final SVH values were established via curve fitting. RESULT: Despite a large inter-individual variability (±SD), group means were similar in the aircraft (initial: 43.0±20.6°; final: 22.5±14.8°) and centrifuge (initial: 40.6±17.0°; final: 20.5±16.0°). Further, individual peculiarities in response patterns were similar in the two conditions. For both the initial and final SVH tilt there was a high correlation between centrifuge and aircraft. CONCLUSION: The correspondence between conditions suggests that the centrifuge is an adequate means for demonstrating the fundamental motion pattern of coordinated flight and also for establishing the individual pilot's ability to perceive an aircraft's roll attitude.Findings are discussed in connection with vestibular learning and the possibility of underlying differences between pilots in the keenness for semicircular canal and somatosensory cues.


Subject(s)
Vestibule, Labyrinth , Humans , Vestibule, Labyrinth/physiology , Centrifugation , Semicircular Canals/physiology , Acceleration , Cues
3.
J Vestib Res ; 31(6): 451-467, 2021.
Article in English | MEDLINE | ID: mdl-33646191

ABSTRACT

BACKGROUND: Recent theories suggest that perception of complex self-motion is governed by familiarity of the motion pattern as a whole in 3D. OBJECTIVE: To explore how familiarity determines the perceived angular displacement with respect to the Earth during a simulated coordinated turn in a gondola centrifuge. METHOD: The centrifuge was accelerated to 2G (gondola displacement 60°) within 12.5 s. Using visual indicators in darkness, responses to the gondola displacement were recorded with subjects (n = 10) in two positions: sitting-upright, facing-forward versus lying-supine, feet-forwards. Each subject underwent 2×2 6-minute runs. RESULT: When upright, subjects indicated a tilt of initially 18.8±11.3°, declining with T = 66±37 s. In the supine position (subject's yaw plane coinciding with the plane of gondola displacement) the indicated displacement was negligible (-0.3±4.8°). CONCLUSION: Since the canal system is most responsive to stimuli in yaw, these findings are difficult to explain by bottom-up models. Rather, the motion pattern during acceleration would be recognized as a familiar or meaningful whole (entering a co-ordinated turn) only when the subject is upright. Presumably, the degree of familiarity is reflected in the subject's ability to discern and estimate a single stimulus component. Findings are discussed in connection with human factors in aviation and the principles of Gestalt psychology.


Subject(s)
Aviation , Vestibule, Labyrinth , Centrifugation , Humans , Orientation, Spatial , Space Perception
4.
Aerosp Med Hum Perform ; 92(2): 75-82, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33468287

ABSTRACT

BACKGROUND: Ischemic hypoxia induced by suprathreshold G-force loading can adversely affect vision, cognition, and lead to loss of consciousness (LOC). The purpose of this study was to determine whether reductions in cerebral oxygenation, caused by subthreshold G-forces (up to 4 Gz and of limited durations that do not lead to LOC), would affect visual perception and working memory performance.METHODS: Sixteen subjects performed visual perception and working memory tasks both before and during Gz exposures (1, 2.2, 3, 4 with leg pressurization, 4 with leg and abdomen pressurization) within a human-use centrifuge.RESULTS: As measured using near-infrared spectroscopy, blood oxygenation over medial prefrontal cortex was similar in the 1 and 2.2 Gz conditions, but was reduced to a similar extent in the 3 and 4 Gz conditions. In parallel, visual perception accuracy was reduced in the 3 and 4 Gz conditions, with no difference between the 3 and 4 Gz conditions. No change in reaction time was seen. Conversely, neither accuracy nor reaction time changes were observed for the visual working memory task.DISCUSSION: These results indicate that although visual working memory is not affected, the ability to visually discriminate between stimuli is reduced at G-forces as low as 3 and 4 Gz. This may have important ramifications for pilots who are routinely subjected to such forces.Croft RJ, Klegrd R, Tribukait A, Taylor NAS, Eiken O. Effects of acceleration-induced reductions in retinal and cerebral oxygenation on human performance. Aerosp Med Hum Perform. 2021; 92(2):7582.


Subject(s)
Acceleration , Memory, Short-Term , Oxygen/blood , Prefrontal Cortex/blood supply , Retinal Vessels , Visual Perception , Adult , Aerospace Medicine , Female , Healthy Volunteers , Humans , Male , Spectroscopy, Near-Infrared , Sweden , Task Performance and Analysis
5.
Aerosp Med Hum Perform ; 88(11): 1043-1048, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29046181

ABSTRACT

BACKGROUND: An aircraft's orientation relative to the ground cannot be perceived via the sense of balance or the somatosensory system. When devoid of external visual references, the pilot must rely on instruments. A sudden unexpected instrument indication is a challenge to the pilot, who might have to question the instrument instead of responding with the controls. In this case report we analyze, from a human-factors perspective, how a limited instrument failure led to a fatal accident. CASE REPORT: During straight-ahead level flight in darkness, at 33,000 ft, the commander of a civil cargo airplane was suddenly confronted by an erroneous pitch-up indication on his primary flight display. He responded by pushing the control column forward, making a bunt maneuver with reduced/negative Gz during approximately 15 s. The pilots did not communicate rationally or cross-check instruments. Recordings of elevator and aileron positions suggest that the commander made intense efforts to correct for several extreme and erroneous roll and pitch indications. Gz displayed an increasing trend with rapid fluctuations and peaks of approximately 3 G. After 50 s the aircraft entered a turn with decreasing radius and finally hit the ground in an inverted attitude. DISCUSSION: A precipitate maneuvring response can, even if occurring in a large aircraft at high altitude, result in a seemingly inexorable course of events, ending with a crash. In the present case both pilots were probably incapacitated by acute psychological stress and spatial disorientation. Intense variations in Gz may have impaired the copilot's reading of the functioning primary flight display.Tribukait A, Eiken O. Instrument failure, stress, and spatial disorientation leading to a fatal crash with a large aircraft. Aerosp Med Hum Perform. 2017; 88(11):1043-1048.


Subject(s)
Accidents, Aviation , Aircraft/instrumentation , Confusion , Orientation, Spatial , Pilots , Stress, Psychological , Adult , Equipment Failure Analysis , Humans , Male , Risk Factors , Sweden
6.
Aerosp Med Hum Perform ; 87(10): 852-861, 2016.
Article in English | MEDLINE | ID: mdl-27662347

ABSTRACT

BACKGROUND: During hovering with a helicopter, an involuntary change in attitude (during brownout) results in reduced lifting force and a horizontal acceleration component. This movement pattern is difficult to perceive via the otolith organs. If the angular displacement occurs rapidly, it will, however, activate the semicircular canals. The major aim of this study was to establish to what extent pitch-plane angular displacements can be perceived based on canal information when there is no tilt stimulus to the otoliths. METHODS: In a helicopter, 9 nonpilots (N) and 8 helicopter pilots (P) underwent 5-6 pitch-forward displacements (magnitude 14-33°, angular velocity 2-7° · s-1). In a swing-out gondola centrifuge, 9 N and 3 P were exposed to a similar canal-otolith conflict (acceleration, seated centripetally) with four displacements of 25° and two of 60°. The visually perceived eye level (VPEL) was continuously recorded using an adjustable luminous dot in darkness. For each helicopter dive and centrifuge run the gain was calculated as the ratio (VPEL deflection)/(displacement of helicopter or gondola). RESULTS: In the helicopter there was no difference between N (0.28 ± 0.13) and P (0.36 ± 0.22). In the centrifuge the gains were 0.34 ± 0.18° (25° displacements) and 0.30 ± 0.16° (60° displacements). Values obtained in the helicopter did not differ significantly from those in the centrifuge. There was a correlation between data obtained during the 25° and 60° displacements in the centrifuge. CONCLUSION: There was a pronounced underestimation of pitch angular displacements in a helicopter. The interindividual variability was considerable. Gains for perceived displacement were similar in helicopter and centrifuge. Tribukait A, Bergsten E, Eiken O. Pitch-plane angular displacement perception during helicopter flight and gondola centrifugation. Aerosp Med Hum Perform. 2016; 87(10):852-861.


Subject(s)
Aviation , Otolithic Membrane/physiology , Pilots , Posture , Proprioception/physiology , Semicircular Canals/physiology , Acceleration , Adult , Aerospace Medicine , Aged , Aircraft , Centrifugation , Female , Gravity Sensing , Humans , Male , Middle Aged , Young Adult
7.
Aerosp Med Hum Perform ; 87(5): 454-63, 2016 May.
Article in English | MEDLINE | ID: mdl-27099084

ABSTRACT

BACKGROUND: One disorienting movement pattern, common during flight, is the entering of a coordinated turn. While the otoliths persistently sense upright head position, the change in roll attitude constitutes a semicircular canal stimulus. This sensory conflict also arises during acceleration in a swing-out gondola centrifuge. From a vestibular viewpoint there are, however, certain differences between the two stimulus situations; the aim of the present study was to elucidate whether these differences are reflected in the perceived roll attitude. METHODS: Eight nonpilots were tested in a centrifuge (four runs) and during flight (two turns). The subjective visual horizontal (SVH) was measured using an adjustable luminous line in darkness. The centrifuge was accelerated from stationary to 1.56 G (roll 50°) within 7 s; the duration of the G plateau was 5 min. With the aircraft, turns with approximately 1.4 G (45°) were entered within 15 s and lasted for 5 min. Tilt perception (TP) was defined as the ratio of SVH/real roll tilt; initial and final values were calculated for each centrifugation/turn. RESULTS: In both systems there was a sensation of tilt that declined with time. The initial TP was (mean ± SD): 0.40 ± 0.27 (centrifuge) and 0.37 ± 0.30 (flight). The final TP was 0.20 ± 0.26 and 0.17 ± 0.19, respectively. Both initial and final TP correlated between the two conditions. CONCLUSION: The physical roll tilt is under-estimated to a similar degree in the centrifuge and aircraft. Also the correspondence at the individual level suggests that the vestibular dilemma of coordinated flight can be recreated in a lifelike manner using a gondola centrifuge.


Subject(s)
Centrifugation , Orientation , Space Perception , Adult , Aerospace Medicine , Aircraft , Female , Humans , Male , Middle Aged , Postural Balance , Vestibule, Labyrinth
8.
Cogn Neurodyn ; 10(1): 7-22, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26834858

ABSTRACT

The primary aim of this study was to establish whether the decline of the memory of an angular displacement, detected by the semicircular canals, is best characterized by an exponential function or by a power function. In 27 subjects a conflict was created between the semicircular canals and the graviceptive systems. Subjects were seated, facing forwards, in the gondola of a large centrifuge. The centrifuge was accelerated from stationary to 2.5Gz. While the swing out of the gondola (66°) during acceleration constitutes a frontal plane angular-displacement stimulus to the semicircular canals, the graviceptive systems persistently signal that the subject is upright. During 6 min at 2.5Gz the perceived head and body position was recorded; in darkness the subject repeatedly adjusted the orientation of a luminous line so that it appeared to be horizontal. Acceleration of the centrifuge induced a sensation of tilt which declined with time in a characteristic way. A three-parameter exponential function (Y = Ae(-bt) + C) and a power function (Y = At(-b) + C) were fitted to the data points. The inter-individual variability was considerable. In the vast majority of cases, however, the exponential function provided a better fit (in terms of RMS error) than the power function. The mean exponential function was: y = 27.8e(-0.018t) + 0.5°, where t is time in seconds. Findings are discussed with connection to possible underlying neural mechanisms; in particular, the head-direction system and short-term potentiation and persistent action potential firing in the hippocampus are considered.

9.
Aviat Space Environ Med ; 84(11): 1131-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24279225

ABSTRACT

BACKGROUND: During a simulated coordinated turn in a gondola centrifuge, the perceived roll-tilt, quantified as the subjective visual horizontal (SVH), may differ tenfold between individuals. One aim of this study was to discern whether this variability reflects real individual characteristics or is due to noise or day-to-day variation. We also wanted to establish whether there are any habituation or learning effects of the centrifuge test. METHODS: In nine nonpilots (NP) and nine student pilots (SP), with a flight experience of 150 h, the SVH was measured using an adjustable luminous line in darkness. At two test occasions (T1, T2) (interval 5-14 d) subjects underwent two runs (R1, R2; acceleration to 2 G in 10 s, gondola inclination 60 degrees, 5 min at 2 G, deceleration to 1 g in 10 s, interval between runs 5 min) in a centrifuge (r = 9.1 m). Initial and final SVH was determined for each individual run. RESULTS: Acceleration of the centrifuge induced a tilt of the SVH. At T1 R1, this SVH tilt was, in NP, initially 24 +/- 18 degrees and finally 8 +/- 10 degrees. The corresponding values for SP were 28 +/- 18 degrees and 31 +/- 33 degrees. The SVH tilt was slightly larger at R2 than at R1. There was no difference between T1 and T2. Reliability coefficients ranged between 0.86 and 0.98 for NP and between 0.78 and 0.99 for SP. CONCLUSION: The large interindividual variability combined with a very high reproducibility suggests the existence of persistent individual characteristics in the perception of complex vestibular stimuli. Habituation or learning effects of gondola centrifugation appears to be small.


Subject(s)
Aerospace Medicine , Otolithic Membrane/physiology , Adult , Centrifugation , Female , Habituation, Psychophysiologic , Humans , Male , Semicircular Canals/physiology , Young Adult
10.
Aviat Space Environ Med ; 84(7): 739-45, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23855072

ABSTRACT

BACKGROUND: Quantitative data on spatial orientation would be valuable not only in assessing the fidelity of flight simulators, but also in evaluation of spatial orientation training. In this study a manual indicator was used for recording the subjective horizontal plane during simulated flight. METHODS: In a six-degrees-of-freedom hexapod hydraulic motion platform simulator, simulating an F-16 aircraft, seven fixed-wing student pilots were passively exposed to two flight sequences. The first consisted in a number of coordinated turns with visual contact with the landscape below. The visually presented roll tilt was up to a maximum 670. The second was a takeoff with a cabin pitch up of 100, whereupon external visual references were lost. The subjects continuously indicated, with the left hand on an adjustable plate, what they perceived as horizontal in roll and pitch. There were two test occasions separated by a 3-d course on spatial disorientation. RESULTS: Responses to changes in simulated roll were, in general, instantaneous. The indicated roll tilt was approximately 30% of the visually presented roll. There was a considerable interindividual variability. However, for the roll response there was a correlation between the two occasions. The amplitude of the response to the pitch up of the cabin was approximately 75%; the response decayed much more slowly than the stimulus. DISCUSSION: With a manual indicator for recording the subjective horizontal plane, individual characteristics in the response to visual tilt stimuli may be detected, suggesting a potential for evaluation of simulation algorithms or training programs.


Subject(s)
Aviation/education , Motion Perception/physiology , Posture/physiology , Proprioception/physiology , Space Perception/physiology , User-Computer Interface , Vestibule, Labyrinth/physiology , Aerospace Medicine , Humans , Male
11.
Aviat Space Environ Med ; 83(11): 1097-100, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23156099

ABSTRACT

BACKGROUND: Both nitrogen bubble embolism and the difficulty of inner ear tissues to wash out nitrogen have been discussed as possible reasons for the selective vulnerability of the inner ear to decompression illness. This case report suggests that nitrogen bubble embolism plays a crucial role in the pathogenesis of inner ear lesions in decompression accidents. CASE REPORT: The current patient, a 48-yr-old male dive master, suffered a severe decompression illness with vertigo as the only residual symptom. At the 1-mo follow-up, neuro-otological evaluation revealed a selective lesion of the superior vestibular division of the left labyrinth with normal functioning inferior vestibular division. At vestibular testing, there was no caloric response from the affected left ear, and the head impulse tests for the lateral and anterior semicircular canal were also impaired. Tests of vestibular evoked myogenic potentials (VEMP) showed divergent results. Ocular VEMP in response to left ear stimulation were absent, whereas the cervical VEMP were completely symmetrical and normal. Thus, the lesion profile implies a partial vestibular loss selectively affecting the superior vestibular division of the inner ear. DISCUSSION: The most likely explanation for such a selective injury seems to be bubble microembolism coupled with both the specific anatomy of this terminally supplied subunit, and with the slow nitrogen wash-out of the vestibular organ.


Subject(s)
Decompression Sickness/etiology , Diving/adverse effects , Ear, Inner/blood supply , Embolism/diagnosis , Vertigo/etiology , Ear Diseases/etiology , Embolism/etiology , Humans , Male , Severity of Illness Index , Vestibular Evoked Myogenic Potentials , Vestibular Function Tests
12.
Aviat Space Environ Med ; 83(5): 496-503, 2012 May.
Article in English | MEDLINE | ID: mdl-22606866

ABSTRACT

BACKGROUND: It has been shown that flight experience may induce an adaptation of the vestibular system. The aim of the present work was to elucidate whether pilots, in comparison with non-pilots, have an increased responsiveness to angular displacement canal stimuli in the pitch plane during a conflict between the otolith organs and the semicircular canals. METHODS: In a large swing-out gondola centrifuge, eight non-pilots, eight fighter pilots, and eight helicopter pilots underwent three runs (2 G, 5 min) heading forward, centripetally, and centrifugally. The direction of the gravitoinertial force was constant with respect to the subject. The visually perceived eye level (VPEL) was measured in darkness by means of an adjustable luminous dot. RESULTS: In the forward position the three groups produced similar results. After acceleration there was a sensation of backward tilt and an increasing depression of VPEL. This effect was smaller in the centripetal position and larger in the centrifugal position. The difference in VPEL between the opposite positions constitutes a measure of the ability to sense the pitch angular displacement canal stimulus related to the swing out of the gondola (60 degrees). This difference was most pronounced initially at the 2-G plateau (mean +/- SD): 13.5 +/- 12.9 degrees (non-pilots), 41.6 +/- 21.1 degrees (fighter pilots), and 19.5 +/- 14.0 degrees (helicopter pilots). There was no significant difference between non-pilots and helicopter pilots. Fighter pilots differed significantly from both non-pilots and helicopter pilots. CONCLUSION: Vestibular learning effects of flying may be revealed in a centrifuge. Fighter pilots had an increased ability, as compared to non-pilots and helicopter pilots, to perceive pitch angular displacements.


Subject(s)
Adaptation, Physiological , Aviation , Gravitation , Orientation/physiology , Vestibule, Labyrinth/physiology , Adult , Case-Control Studies , Centrifugation , Humans , Male , Middle Aged , Visual Perception/physiology
13.
Eur J Appl Physiol ; 112(5): 1717-23, 2012 May.
Article in English | MEDLINE | ID: mdl-21892631

ABSTRACT

Motion sickness (MS) has been identified as a non-thermal factor that can moderate autonomic thermoregulatory responses. It has been shown that MS exaggerates core cooling during immersion in cold (15 °C) and luke-warm (28 °C) water by attenuating cold-induced vasoconstriction. The aim of the present study was to investigate whether MS affects thermal balance in a thermoneutral air environment. Eleven subjects were exposed to rotation in two conditions, control (CN) and MS. In the CN condition subjects refrained from head movements, whereas in the MS condition they performed a sequence of maximal head movements (left, right, up, down) at 15-s intervals until they were very nauseous. Sweating rate, rectal temperature (T(re)), the difference in temperature between the right forearm and tip of the second finger (T(ff)) as an index of cutaneous vasomotor tone, perceived MS, thermal comfort and temperature perception were recorded before and during rotation, and during 90-min post-rotation. During the post-rotation period, T(re) dropped and sweating rate increased in the MS but not in the CN condition. The T(ff) response suggests that MS-induced peripheral vasodilatation which, together with the sweating resulted in increased heat loss. During rotation, subjects perceived temperature to be uncomfortably high, suggesting that MS may also affect thermoregulatory behaviour. It thus appears that also in a thermoneutral air environment MS may substantially affect thermal balance.


Subject(s)
Body Temperature Regulation/physiology , Motion Sickness/physiopathology , Oxygen Consumption/physiology , Sweating/physiology , Adult , Body Temperature , Environment , Humans , Male , Vasomotor System/physiology , Young Adult
14.
Aviat Space Environ Med ; 82(5): 523-30, 2011 May.
Article in English | MEDLINE | ID: mdl-21614866

ABSTRACT

BACKGROUND: It has previously been reported that nonpilots underestimate the roll tilt angle after acceleration in a gondola centrifuge. The aim of the present work was to elucidate the significance of flight experience for roll tilt perception based on vestibular information. METHODS: The subjective visual horizontal (SVH) was measured by means of an adjustable luminous line in darkness. Eight nonpilots (N), nine fighter pilots (F), and eight helicopter pilots (H) underwent two centrifuge runs (2 G, 5 min) heading forward and backward, respectively. The roll position of the gondola (60 degrees at 2 G) was controlled so that the subject was always upright with respect to the gravitoinertial force. RESULTS: Upon acceleration of the centrifuge there was a tilt of the SVH in a direction compensatory to the inclination of the gondola. This tilt was larger in the forward position [N: 17.2 +/- 6.4 degrees, F: 31.2 +/- 16.4 degrees, H: 33.6 +/- 18.2 degrees (means +/- SD)] than in the backward position (N: -5.0 +/- 6.8 degrees, F: -12.2 +/- 17.4 degrees, H: -10.4 +/- 15.4 degrees). In N the tilt declined with time, approaching zero by the end of the 2-G plateau. In the pilots it was significantly larger and did not decline. CONCLUSION: Flight experience results in an increased ability to perceive the roll tilt during movement along a curved path. That this can be revealed in a centrifuge might suggest that acceleration of the centrifuge constitutes a movement pattern which is similar, from a vestibular point of view, to that of an airplane entering a coordinated turn.


Subject(s)
Centrifugation , Space Perception , Acceleration , Adult , Aerospace Medicine , Female , Humans , Male , Middle Aged , Orientation , Vestibule, Labyrinth
15.
Brain Res Bull ; 82(3-4): 193-200, 2010 May 31.
Article in English | MEDLINE | ID: mdl-20394809

ABSTRACT

Motion sickness (MS) exaggerates body cooling during cold-water immersion. The aim of the present study was to investigate whether such MS-induced predisposition to hypothermia is influenced by two anti-MS drugs: the histamine-receptor blocker dimenhydrinate (DMH) and the muscarine-receptor blocker scopolamine (Scop). Nine healthy male subjects were immersed in 15 degrees C water for a maximum of 90min in five conditions: (1) control (CN): no medication, no MS provocation; (2) MS-control (MS-CN): no medication, MS provocation; (3) MS-placebo (MS-P): placebo DMH and placebo Scop, MS provocation; (4) MS-DMH: DMH and placebo Scop, MS provocation; (5) MS-Scop: Scop and placebo DMH, MS provocation. MS was induced by use of a rotating chair. Throughout the experiments rectal temperature (T(re)), the difference in temperature between the non-immersed right forearm and third finger (T(ff)) as an index of peripheral vasoconstriction, and oxygen uptake (VO(2)) as a measure of shivering thermogenesis, were recorded. DMH and Scop were similarly efficacious in ameliorating nausea. The fall in T(re) was greater in the MS-CN and MS-P conditions than in the CN condition. DMH, but not Scop, prevented the MS-induced increase in body-core cooling. MS attenuated the cold-induced vasoconstriction, an effect which was fully prevented by DMH but only partially by Scop. MS provocation did not affect VO(2) in any condition. The results suggest that the MS-induced predisposition to hypothermia is predominantly mediated by histaminergic mechanisms and that DMH might be useful in conjunction with maritime accidents or other scenarios where exposure to cold and MS are imminent features.


Subject(s)
Body Temperature Regulation/physiology , Cholinergic Antagonists , Histamine H1 Antagonists , Hypothermia, Induced , Motion Sickness/physiopathology , Neurons/physiology , Adult , Animals , Body Temperature , Body Temperature Regulation/drug effects , Cholinergic Antagonists/pharmacology , Cholinergic Antagonists/therapeutic use , Dimenhydrinate/pharmacology , Dimenhydrinate/therapeutic use , Histamine/metabolism , Histamine H1 Antagonists/pharmacology , Histamine H1 Antagonists/therapeutic use , Humans , Male , Motion Sickness/drug therapy , Neuropeptides/metabolism , Oxygen Consumption , Placebos , Scopolamine/pharmacology , Scopolamine/therapeutic use , Young Adult
16.
Clin Neurophysiol ; 120(5): 974-9, 2009 May.
Article in English | MEDLINE | ID: mdl-19376744

ABSTRACT

OBJECTIVE: To explore the mechanisms for skull tap induced vestibular evoked myogenic potentials (VEMP). METHODS: The muscular responses were recorded over both sternocleidomastoid (SCM) muscles using skin electrodes. A skull tapper which provided a constant stimulus intensity was used to test cervical vestibular evoked myogenic potentials (VEMP) in response to lateral skull taps in healthy subjects (n=10) and in patients with severe unilateral loss of vestibular function (n=10). RESULTS: Skull taps applied approximately 2 cm above the outer ear canal caused highly reproducible VEMP. There were differences in VEMP in both normals and patients depending on side of tapping. In normals, there was a positive-negative ("normal") VEMP on the side contra-lateral to the skull tapping, but no significant VEMP ipsi-laterally. In patients, skull taps above the lesioned ear caused a contra-lateral positive-negative VEMP (as it did in the normals), in addition there was an ipsi-lateral negative-positive ("inverted") VEMP. When skull taps were presented above the healthy ear there was only a small contra-lateral positive-negative VEMP but, similar to the normals, no VEMP ipsi-laterally. CONCLUSIONS: The present data, in conjunction with earlier findings, support a theory that skull-tap VEMP responses are mediated by two different mechanisms. It is suggested that skull tapping causes both a purely ipsi-lateral stimulus side independent SCM response and a bilateral and of opposite polarity SCM response that is stimulus side dependent. Possibly, the skull tap induced VEMP responses are the sum of a stimulation of two species of vestibular receptors, one excited by vibration (which is rather stimulus site independent) and one excited by translation (which is more stimulus site dependent). SIGNIFICANCE: Skull-tap VEMP probably have two different mechanisms. Separation of the two components might reveal the status of different labyrinthine functions.


Subject(s)
Evoked Potentials/physiology , Neck Muscles/physiology , Vestibular Nuclei/physiology , Vestibule, Labyrinth/physiology , Adult , Efferent Pathways/physiology , Electromyography/methods , Female , Functional Laterality/physiology , Hair Cells, Vestibular/physiology , Humans , Male , Middle Aged , Muscle Contraction/physiology , Neck Muscles/innervation , Neural Conduction/physiology , Physical Stimulation/methods , Reflex/physiology , Skull/physiology , Vestibular Function Tests , Young Adult
17.
Clin Neurophysiol ; 119(10): 2363-9, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18757235

ABSTRACT

OBJECTIVE: To explore the mechanisms for skull tap induced vestibular evoked myogenic potentials (VEMP). METHODS: An electro-mechanical "skull tapper" (that provided a constant stimulus intensity) was used to test the effects of different midline stimulus sites/directions in healthy subjects (n=10) and in patients with severe unilateral loss of vestibular function (n=8). RESULTS: The standardized midline skull taps caused highly reproducible VEMP. There were highly significant differences in amplitude and latency in both normals and patients depending on site/direction of tapping (suggesting a stimulus direction dependency). Occiput skull taps caused, in comparisons to forehead and vertex taps, larger amplitude VEMP with more pronounced differences between the lesioned and the healthy side in the patients. CONCLUSIONS: The present data, in conjunction with earlier findings, support a theory that skull tap VEMP are mediated by two different mechanisms. It is suggested that skull tapping causes both skull vibration and head acceleration. Further, the VEMP would be the sum of the direction-independent vibration-induced response (from the sound-sensitive part of the saccule) and the direction-dependent head acceleration response (from other parts of the labyrinth). SIGNIFICANCE: Skull tap VEMP, as a diagnostic test, is not equivalent to sound-induced VEMP.


Subject(s)
Evoked Potentials/physiology , Functional Laterality/physiology , Skull/physiology , Vestibule, Labyrinth/physiology , Vibration , Adult , Analysis of Variance , Brain Mapping , Electromyography , Female , Humans , Male , Middle Aged , Neck Muscles/physiology , Physical Stimulation , Reaction Time/physiology , Reference Values , Vestibular Diseases/physiopathology , Young Adult
18.
Aviat Space Environ Med ; 79(9): 860-6, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18785354

ABSTRACT

INTRODUCTION: The somatogravic illusion (SGI) is easily broken when the pilot looks out the aircraft window during daylight flight, but it has proven difficult to break or even reduce the SGI in non-pilots in simulators using synthetic visual scenes. Could visual-flow scenes that accommodate compensatory head movement reduce the SGI in naive subjects? METHODS: We investigated the effects of visual cues on the SGI induced by a human centrifuge. The subject was equipped with a head-tracked, head-mounted display (HMD) and was seated in a fixed gondola facing the center of rotation. The angular velocity of the centrifuge increased from near zero until a 0.57-G centripetal acceleration was attained, resulting in a tilt of the gravitoinertial force vector, corresponding to a pitch-up of 30 degrees. The subject indicated perceived horizontal continuously by means of a manual adjustable-plate system. We performed two experiments with within-subjects designs. In Experiment 1, the subjects (N = 13) viewed a darkened HMD and a presentation of simple visual flow beneath a horizon. In Experiment 2, the subjects (N = 12) viewed a darkened HMD, a scene including symbology superimposed on simple visual flow and horizon, and this scene without visual flow (static). RESULTS: In Experiment 1, visual flow reduced the SGI from 12.4 +/- 1.4 degrees (mean +/- SE) to 8.7 +/- 1.5 degrees. In Experiment 2, the SGI was smaller in the visual flow condition (9.3 +/- 1.8 degrees) than with the static scene (13.3 +/- 1.7 degrees) and without HMD presentation (14.5 +/- 2.3 degrees), respectively. CONCLUSION: It is possible to reduce the SGI in non-pilots by means of a synthetic horizon and simple visual flow conveyed by a head-tracked HMD. This may reflect the power of a more intuitive display for reducing the SGI.


Subject(s)
Hypergravity , Optical Illusions/physiology , Orientation/physiology , Space Flight , Vision, Ocular/physiology , Adult , Analysis of Variance , Depth Perception , Female , Humans , Male , Pilot Projects , Vision Tests
19.
Aviat Space Environ Med ; 79(5): 479-87, 2008 May.
Article in English | MEDLINE | ID: mdl-18500044

ABSTRACT

BACKGROUND: In aviation, vestibular-induced spatial disorientation is a significant cause of accidents. Recreating flight-like vestibular stimuli in simulators might be a means for training pilots to respond adequately in disorienting situations. Due to the physical constraints of land-based simulators, the question arises whether a given illusion may be created in different ways. For instance, is it possible to induce sensations of tilt by rotary stimuli? The present study concerns the relationship between sensations of rotation and tilt during complex vestibular stimulation. METHODS: The visual sensation of roll rotation was quantified by means of a velocity-matching procedure. In a large gondola centrifuge eight subjects underwent four runs (2 G, 2 min) with different heading positions (forward, backward, centripetally, and centrifugally). The inclination of the gondola persistently corresponded with the vector sum of the Earth gravity force and the centrifugal force (60 degrees at 2 G). Thus, the semicircular canal stimulus in roll was combined in different ways with stimuli in yaw and pitch, as well as with an increasing or decreasing G vector. RESULTS: The magnitude of the responses was only dependent on the roll component of the stimulus. The gain, defined as the ratio between the response and the roll stimulus, was 7-10%. The responses decayed with a time constant ranging from 4 to 5.5 s. CONCLUSION: The visual sensation of roll rotation reflects the roll plane canal velocity stimulus independently of other stimulus components. This is in contrast to earlier findings on the sensation of changes in position (roll tilt).


Subject(s)
Aerospace Medicine , Reflex, Vestibulo-Ocular/physiology , Sensation/physiology , Vestibule, Labyrinth/physiopathology , Adult , Centrifugation , Deceleration , Female , Humans , Male , Nystagmus, Pathologic/physiopathology , Psychophysics , Rotation
20.
Brain Cogn ; 63(1): 24-30, 2007 Feb.
Article in English | MEDLINE | ID: mdl-16935402

ABSTRACT

The present investigation concerns the integrity of a primary mental function, the egocentric frame of reference and the sense of polarity of one's own head. The visually perceived eye level (VPEL) and the subjective antero-posterior axis of the head were measured by means of a visual indicator in darkness during two stimulus conditions: static pitch (sagittal-plane) tilting in the 1-g environment and gondola centrifugation (2G). It is demonstrated that an increase in the magnitude of the gravitoinertial (G) force, acting in the direction of the head and body long (z) axis, causes a substantial change not only in the VPEL but also in the perceived direction of the antero-posterior axis of the head.


Subject(s)
Gravity Sensing/physiology , Head , Posture/physiology , Proprioception/physiology , Adult , Female , Humans , Male , Middle Aged , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL
...