Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Aging Cell ; 20(2): e13292, 2021 02.
Article in English | MEDLINE | ID: mdl-33400367

ABSTRACT

Old age and female sex are risk factors for the development of osteoarthritis (OA) and chronic pain. We investigated the effects of sex and age on pain modulatory networks in a healthy state and during OA progression. We used functional MRI to determine the effects of sex and age on periaqueductal gray functional connectivity (PAG FC) in a healthy state (pre-OA) and during the early and late phases of monosodium iodoacetate-induced OA in rats. We then examined how sex and age affect longitudinal changes in PAG FC in OA. In a healthy state, females exhibited more widespread PAG FC than males, and this effect was exaggerated with aging. Young males had moderate PAG FC changes during the early phase but recruited additional brain regions, including the rostral anterior cingulate cortex (ACC), during the late phase. Young females exhibited widespread PAG FC in the early phase, which includes connections to insula, caudal ACC, and nucleus accumbens (NAc). Older groups had strong PAG FC with fewer regions in the early phase, but they recruited additional brain regions, including NAc, in the late phase. Overall, our findings show that PAG FC is modulated by sex and age in a healthy state. A widespread PAG network in the early phase of OA pain may contribute to the transition from acute to chronic OA pain and the increased risk of developing chronic pain for females. Enhanced PAG FC with the reward system may represent a potential mechanism underlying chronic OA pain in elderly patients.


Subject(s)
Osteoarthritis/metabolism , Pain/metabolism , Age Factors , Animals , Female , Male , Rats , Rats, Inbred F344 , Sex Factors
2.
Front Psychiatry ; 11: 39, 2020.
Article in English | MEDLINE | ID: mdl-32116854

ABSTRACT

Successfully predicting the susceptibility of individuals to placebo analgesics will aid in developing more effective pain medication and therapies, as well as aiding potential future clinical use of placebos. In pursuit of this goal, we analyzed healthy and chronic pain patients' patterns of responsiveness during conditioning rounds and their links to conditioned placebo analgesia and the mediating effect of expectation on those responses. We recruited 579 participants (380 healthy, 199 with temporomandibular disorder [TMD]) to participate in a laboratory placebo experiment. Individual pain sensitivity dictated the temperatures used for high- and low-pain stimuli, paired with red or green screens, respectively, and participants were told there would be an analgesic intervention paired with the green screens. Over two conditioning sessions and one testing session, participants rated the painfulness of each stimulus on a visual analogue scale from 0 to 100. During the testing phase, the same temperature was used for both red and green screens to assess responses to the placebo effect, which was defined as the difference between the average of the high-pain-cue stimuli and low-pain-cue stimuli. Delta scores, defined as each low-pain rating subtracted from its corresponding high-pain rating, served as a means of modeling patterns of conditioning strength and placebo responsiveness. Latent class analysis (LCA) was then conducted to classify the participants based on the trajectories of the delta values during the conditioning rounds. Classes characterized by persistently greater or increasing delta scores during conditioning displayed greater placebo analgesia during testing than those with persistently lower or decreasing delta scores. Furthermore, the identified groups' expectation of pain relief acted as a mediator for individual placebo analgesic effects. This study is the first to use LCA to discern the relationship between patterns of learning and the resultant placebo analgesia in chronic pain patients. In clinical settings, this knowledge can be used to enhance clinical pain outcomes, as chronic pain patients with greater prior experiences of pain reduction may benefit more from placebo analgesia.

3.
Pain ; 161(6): 1371-1380, 2020 06.
Article in English | MEDLINE | ID: mdl-31977940

ABSTRACT

Endogenous pain inhibition is less efficient in chronic pain patients. Diffuse noxious inhibitory control (DNIC), a form of endogenous pain inhibition, is compromised in women and older people, making them more vulnerable to chronic pain. However, the underlying mechanisms remain unclear. Here, we used a capsaicin-induced DNIC test and resting-state functional MRI to investigate the impact of aging and sex on endogenous pain inhibition and associated brain circuitries in healthy rats. We found that DNIC was less efficient in young females compared with young males. Diffuse noxious inhibitory control response was lost in old rats of both sexes, but the brain networks engaged during DNIC differed in a sex-dependent manner. Young males had the most efficient analgesia with the strongest connectivity between anterior cingulate cortex (ACC) and periaqueductal gray (PAG). The reduced efficiency of DNIC in young females seemed to be driven by widespread brain connectivity. Old males showed increased connectivity between PAG, raphe nuclei, pontine reticular nucleus, and hippocampus, which may not be dependent on connections to ACC, whereas old females showed increased connectivity between ACC, PAG, and more limbic regions. These findings suggest that distinct brain circuitries including the limbic system may contribute to higher susceptibility to pain modulatory deficits in the elderly population, and sex may be a risk factor for developing age-related chronic pain.


Subject(s)
Brain , Diffuse Noxious Inhibitory Control , Aged , Aged, 80 and over , Animals , Brain/diagnostic imaging , Female , Humans , Inhibition, Psychological , Magnetic Resonance Imaging , Male , Periaqueductal Gray/diagnostic imaging , Rats
4.
J Gerontol A Biol Sci Med Sci ; 75(8): 1465-1472, 2020 07 13.
Article in English | MEDLINE | ID: mdl-31412104

ABSTRACT

In this study, we investigated age and sex differences in acute and chronic pain in rats. Groups of young (3-6 months) and aged (20-24 months) male and female Fischer 344 rats were used to assess basal thermal and mechanical thresholds, capsaicin-induced acute nocifensive responses and c-Fos expression in the spinal cord, and monoiodoacetate (MIA)-induced knee osteoarthritis (OA)-like pain responses. There was a significant sex, but not age, effect on thermal threshold on the hindpaw and mechanical threshold on the knee joint. No significant age and sex differences in capsaicin-induced nocifensive and c-Fos responses were observed. MIA induced a greater peak reduction of weight-bearing responses in aged males than young rats. Aged females developed the most profound weight-bearing deficit. With knee joint sensitivity as a primary outcome measure, MIA induced more pronounced and longer-lasting hyperalgesia in older rats, with aged female rats showing the worst effect. These data suggest that age may not have significant effect on acute nociceptive processing, but it significantly impacts OA-like pain, making aged rats, especially females, more vulnerable to chronic pain conditions. These preclinical models should provide important tools to investigate basic mechanisms underlying the impact of age and sex in chronic pain conditions.


Subject(s)
Aging/physiology , Arthritis, Experimental/physiopathology , Behavior, Animal/physiology , Hyperalgesia/physiopathology , Animals , Capsaicin/pharmacology , Enzyme Inhibitors/pharmacology , Female , Iodoacetic Acid/pharmacology , Male , Pain Measurement , Pain Threshold , Proto-Oncogene Proteins c-fos/metabolism , Rats, Inbred F344 , Sex Factors , Spinal Cord/metabolism , Weight-Bearing/physiology
5.
Sci Rep ; 9(1): 19760, 2019 12 24.
Article in English | MEDLINE | ID: mdl-31874985

ABSTRACT

Observing successful pain treatment in others can induce anticipatory neural processes that, in turn, relieve pain. Previous studies have suggested that social learning and observation influence placebo hypoalgesia. Here, we used electroencephalography (EEG) to determine the neurophysiological changes associated with pain relief acquired through the observation. Thirty-one participants observed a demonstrator undergo painful heat stimulations paired with a "control" cream and non-painful ones paired with a "treatment" cream, which actually were both Vanicreams. After their observation, the participants then received the same creams and stimulations. We found that the treatment cream led to lower self-reported pain intensity ratings than the control cream. Anticipatory treatment cues elicited smaller P2 in electrodes F1, Fz, FC1, and FCz than the control condition. The P2 component localization indicated a higher current density in the right middle frontal gyrus, a region associated with attentional engagement. In placebo responders, the sensorimotor cortex activity captured in electrodes C3, Cz, and C4 indicated that hypoalgesia was positively correlated with resting state peak alpha frequency (PAF). These results suggest that observationally-induced placebo hypoalgesia may be driven by anticipatory mechanisms that modulate frontal attentional processes. Furthermore, resting state PAF could serve as a predictor of observationally-induced hypoalgesia.


Subject(s)
Electroencephalography , Evoked Potentials, Somatosensory , Frontal Lobe/physiopathology , Pain Management , Pain Measurement , Pain/physiopathology , Female , Humans , Male
6.
Neurobiol Pain ; 6: 100033, 2019.
Article in English | MEDLINE | ID: mdl-31223137

ABSTRACT

All treatments are given in a context, suggesting that conditioning cues may significantly influence therapeutic outcomes. We tested the hypothesis that context affects placebo analgesia in rodents. To produce neuropathic pain in rats, we performed chronic constriction injury of the infraorbital nerve. We then treated the rats daily, over a seven day period, with injections of either fentanyl or saline, with or without associated conditioning cues; a fourth group received no treatment. On the eighth day, we replaced fentanyl with saline to test for conditioned placebo analgesia. We tested the effects of treatment by measuring sensitivity to mechanical stimuli and grimace scale scores. We found no significant differences in either of these outcomes among the four experimental groups. These findings suggest that chronic, neuropathic pain in rats may not be susceptible to placebo analgesia.

SELECTION OF CITATIONS
SEARCH DETAIL
...