Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(3): e0214250, 2019.
Article in English | MEDLINE | ID: mdl-30921410

ABSTRACT

BACKGROUND: Mitochondrial disease is a family of genetic disorders characterized by defects in the generation and regulation of energy. Epilepsy is a common symptom of mitochondrial disease, and in the vast majority of cases, refractory to commonly used antiepileptic drugs. Ferroptosis is a recently-described form of iron- and lipid-dependent regulated cell death associated with glutathione depletion and production of lipid peroxides by lipoxygenase enzymes. Activation of the ferroptosis pathway has been implicated in a growing number of disorders, including epilepsy. Given that ferroptosis is regulated by balancing the activities of glutathione peroxidase-4 (GPX4) and 15-lipoxygenase (15-LO), targeting these enzymes may provide a rational therapeutic strategy to modulate seizure. The clinical-stage therapeutic vatiquinone (EPI-743, α-tocotrienol quinone) was reported to reduce seizure frequency and associated morbidity in children with the mitochondrial disorder pontocerebellar hypoplasia type 6. We sought to elucidate the molecular mechanism of EPI-743 and explore the potential of targeting 15-LO to treat additional mitochondrial disease-associated epilepsies. METHODS: Primary fibroblasts and B-lymphocytes derived from patients with mitochondrial disease-associated epilepsy were cultured under standardized conditions. Ferroptosis was induced by treatment with the irreversible GPX4 inhibitor RSL3 or a combination of pharmacological glutathione depletion and excess iron. EPI-743 was co-administered and endpoints, including cell viability and 15-LO-dependent lipid oxidation, were measured. RESULTS: EPI-743 potently prevented ferroptosis in patient cells representing five distinct pediatric disease syndromes with associated epilepsy. Cytoprotection was preceded by a dose-dependent decrease in general lipid oxidation and the specific 15-LO product 15-hydroxyeicosatetraenoic acid (15-HETE). CONCLUSIONS: These findings support the continued clinical evaluation of EPI-743 as a therapeutic agent for PCH6 and other mitochondrial diseases with associated epilepsy.


Subject(s)
Carbolines/pharmacology , Epilepsy/drug therapy , Ferroptosis/drug effects , Mitochondrial Diseases/drug therapy , Phospholipid Hydroperoxide Glutathione Peroxidase/antagonists & inhibitors , Ubiquinone/analogs & derivatives , Arachidonate 15-Lipoxygenase/metabolism , Cell Line , Epilepsy/metabolism , Epilepsy/pathology , Humans , Hydroxyeicosatetraenoic Acids/metabolism , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Ubiquinone/pharmacology
2.
PLoS One ; 13(8): e0201369, 2018.
Article in English | MEDLINE | ID: mdl-30110365

ABSTRACT

Ferroptosis is a form of programmed cell death associated with inflammation, neurodegeneration, and ischemia. Vitamin E (alpha-tocopherol) has been reported to prevent ferroptosis, but the mechanism by which this occurs is controversial. To elucidate the biochemical mechanism of vitamin E activity, we systematically investigated the effects of its major vitamers and metabolites on lipid oxidation and ferroptosis in a striatal cell model. We found that a specific endogenous metabolite of vitamin E, alpha-tocopherol hydroquinone, was a dramatically more potent inhibitor of ferroptosis than its parent compound, and inhibits 15-lipoxygenase via reduction of the enzyme's non-heme iron from its active Fe3+ state to an inactive Fe2+ state. Furthermore, a non-metabolizable isosteric analog of vitamin E which retains antioxidant activity neither inhibited 15-lipoxygenase nor prevented ferroptosis. These results call into question the prevailing model that vitamin E acts predominantly as a non-specific lipophilic antioxidant. We propose that, similar to the other lipophilic vitamins A, D and K, vitamin E is instead a pro-vitamin, with its quinone/hydroquinone metabolites responsible for its anti-ferroptotic cytoprotective activity.


Subject(s)
Apoptosis/drug effects , Arachidonate 15-Lipoxygenase/metabolism , Iron/metabolism , Lipid Peroxidation/drug effects , Vitamins/pharmacology , alpha-Tocopherol/analogs & derivatives , Animals , Cell Line , Cytoprotection/drug effects , Mice , alpha-Tocopherol/pharmacology
3.
Cell Metab ; 23(3): 427-40, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26959184

ABSTRACT

FGF21 plays a central role in energy, lipid, and glucose homeostasis. To characterize the pharmacologic effects of FGF21, we administered a long-acting FGF21 analog, PF-05231023, to obese cynomolgus monkeys. PF-05231023 caused a marked decrease in food intake that led to reduced body weight. To assess the effects of PF-05231023 in humans, we conducted a placebo-controlled, multiple ascending-dose study in overweight/obese subjects with type 2 diabetes. PF-05231023 treatment resulted in a significant decrease in body weight, improved plasma lipoprotein profile, and increased adiponectin levels. Importantly, there were no significant effects of PF-05231023 on glycemic control. PF-05231023 treatment led to dose-dependent changes in multiple markers of bone formation and resorption and elevated insulin-like growth factor 1. The favorable effects of PF-05231023 on body weight support further evaluation of this molecule for the treatment of obesity. Longer studies are needed to assess potential direct effects of FGF21 on bone in humans.


Subject(s)
Anti-Obesity Agents/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Fibroblast Growth Factors/pharmacology , Obesity/drug therapy , Adolescent , Adult , Aged , Animals , Anti-Obesity Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Blood Glucose , Body Weight/drug effects , Diabetes Mellitus, Type 2/blood , Drug Evaluation, Preclinical , Female , Fibroblast Growth Factors/therapeutic use , Gene Expression/drug effects , Humans , Insulin/blood , Lipid Metabolism/drug effects , Macaca fascicularis , Male , Middle Aged , Obesity/blood , Subcutaneous Fat/drug effects , Subcutaneous Fat/metabolism , Weight Loss , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...