Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biomolecules ; 9(4)2019 03 27.
Article in English | MEDLINE | ID: mdl-30934776

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder that exhibits aberrant protein aggregation and mitochondrial dysfunction. Ndi1, the yeast mitochondrial NADH dehydrogenase (complex I) enzyme, is a single subunit, internal matrix-facing protein. Previous studies have shown that Ndi1 expression leads to improved mitochondrial function in models of complex I-mediated mitochondrial dysfunction. The trans-mitochondrial cybrid cell model of PD was created by fusing mitochondrial DNA-depleted SH-SY5Y cells with platelets from a sporadic PD patient. PD cybrid cells reproduce the mitochondrial dysfunction observed in a patient's brain and periphery and form intracellular, cybrid Lewy bodies comparable to Lewy bodies in PD brain. To improve mitochondrial function and alter the formation of protein aggregates, Ndi1 was expressed in PD cybrid cells and parent SH-SY5Y cells. We observed a dramatic increase in mitochondrial respiration, increased mitochondrial gene expression, and increased PGC-1α gene expression in PD cybrid cells expressing Ndi1. Total cellular aggregated protein content was decreased but Ndi1 expression was insufficient to prevent cybrid Lewy body formation. Ndi1 expression leads to improved mitochondrial function and biogenesis signaling, both processes that could improve neuron survival during disease. However, other aspects of PD pathology such as cybrid Lewy body formation were not reduced. Consequently, resolution of mitochondrial dysfunction alone may not be sufficient to overcome other aspects of PD-related cellular pathology.


Subject(s)
Coculture Techniques , Electron Transport Complex I/genetics , Mitochondria/metabolism , Models, Biological , Parkinson Disease/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/enzymology , Cell Line, Tumor , Electron Transport Complex I/metabolism , Humans , Saccharomyces cerevisiae Proteins/metabolism
2.
Exp Neurol ; 283(Pt A): 188-203, 2016 09.
Article in English | MEDLINE | ID: mdl-27302680

ABSTRACT

Axonal injury is present in essentially all clinically significant cases of traumatic brain injury (TBI). While no effective treatment has been identified to date, experimental TBI models have shown promising axonal protection using immunosuppressants FK506 and Cyclosporine-A, with treatment benefits attributed to calcineurin inhibition or protection of mitochondrial function. However, growing evidence suggests neuroprotective efficacy of these compounds may also involve direct modulation of ion channels, and in particular Kv1.3. The present study tested whether blockade of Kv1.3 channels, using Clofazimine (CFZ), would alleviate TBI-induced white matter pathology in rodents. Postinjury CFZ administration prevented suppression of compound action potential (CAP) amplitude in the corpus callosum of adult rats following midline fluid percussion TBI, with injury and treatment effects primarily expressed in unmyelinated CAPs. Kv1.3 protein levels in callosal tissue extracts were significantly reduced postinjury, but this loss was prevented by CFZ treatment. In parallel, CFZ also attenuated the injury-induced elevation in pro-inflammatory cytokine IL1-ß. The effects of CFZ on glial function were further studied using mixed microglia/astrocyte cell cultures derived from P3-5 mouse corpus callosum. Cultures of callosal glia challenged with lipopolysaccharide exhibited a dramatic increase in IL1-ß levels, accompanied by reactive morphological changes in microglia, both of which were attenuated by CFZ treatment. These results support a cell specific role for Kv1.3 signaling in white matter pathology after TBI, and suggest a treatment approach based on the blockade of these channels. This therapeutic strategy may be especially efficacious for normalizing neuro-glial interactions affecting unmyelinated axons after TBI.


Subject(s)
Brain Injuries, Traumatic/complications , Gene Expression Regulation/physiology , Kv1.3 Potassium Channel/metabolism , Leukoencephalopathies/etiology , Leukoencephalopathies/pathology , Action Potentials/drug effects , Animals , Animals, Newborn , Brain Injuries, Traumatic/pathology , Calcium-Binding Proteins/metabolism , Cells, Cultured , Clofazimine/pharmacology , Corpus Callosum/drug effects , Corpus Callosum/metabolism , Cyclosporine/therapeutic use , Disease Models, Animal , Electric Stimulation , Gene Expression Regulation/drug effects , Immunosuppressive Agents/therapeutic use , Leukoencephalopathies/drug therapy , Male , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Potassium Channel Blockers/pharmacology , Rats , Rats, Sprague-Dawley , Tacrolimus/therapeutic use
3.
Mol Neurodegener ; 8: 6, 2013 Jan 26.
Article in English | MEDLINE | ID: mdl-23351342

ABSTRACT

BACKGROUND: Lewy bodies (LB) are a neuropathological hallmark of Parkinson's disease (PD) and other synucleinopathies. The role their formation plays in disease pathogenesis is not well understood, in part because studies of LB have been limited to examination of post-mortem tissue. LB formation may be detrimental to neuronal survival or merely an adaptive response to other ongoing pathological processes. In a human cytoplasmic hybrid (cybrid) neural cell model that expresses mitochondrial DNA from PD patients, we observed spontaneous formation of intracellular protein aggregates ("cybrid LB" or CLB) that replicate morphological and biochemical properties of native, cortical LB. We studied mitochondrial morphology, bioenergetics and biogenesis signaling by creating stable sub-clones of three PD cybrid cell lines derived from cells expressing CLB. RESULTS: Cloning based on CLB expression had a differential effect on mitochondrial morphology, movement and oxygen utilization in each of three sub-cloned lines, but no long-term change in CLB expression. In one line (PD63(CLB)), mitochondrial function declined compared to the original PD cybrid line (PD63(Orig)) due to low levels of mtDNA in nucleoids. In another cell line (PD61(Orig)), the reverse was true, and cellular and mitochondrial function improved after sub-cloning for CLB expression (PD61(CLB)). In the third cell line (PD67(Orig)), there was no change in function after selection for CLB expression (PD67(CLB)). CONCLUSIONS: Expression of mitochondrial DNA derived from PD patients in cybrid cell lines induced the spontaneous formation of CLB. The creation of three sub-cloned cybrid lines from cells expressing CLB resulted in differential phenotypic changes in mitochondrial and cellular function. These changes were driven by the expression of patient derived mitochondrial DNA in nucleoids, rather than by the presence of CLB. Our studies suggest that mitochondrial DNA plays an important role in cellular and mitochondrial dysfunction in PD. Additional studies will be needed to assess the direct effect of CLB expression on cellular and mitochondrial function.


Subject(s)
Hybrid Cells/metabolism , Lewy Bodies/metabolism , Mitochondria/metabolism , Neurons , Parkinson Disease/metabolism , Adult , Aged , DNA, Mitochondrial/metabolism , Energy Metabolism , Female , Humans , Hybrid Cells/ultrastructure , Lewy Bodies/pathology , Male , Microscopy, Electron, Transmission , Middle Aged , Mitochondria/ultrastructure , Parkinson Disease/genetics , Parkinson Disease/pathology , Reverse Transcriptase Polymerase Chain Reaction
4.
Mol Neurodegener ; 4: 26, 2009 Jun 17.
Article in English | MEDLINE | ID: mdl-19534794

ABSTRACT

BACKGROUND: It has been hypothesized that reduced axonal transport contributes to the degeneration of neuronal processes in Parkinson's disease (PD). Mitochondria supply the adenosine triphosphate (ATP) needed to support axonal transport and contribute to many other cellular functions essential for the survival of neuronal cells. Furthermore, mitochondria in PD tissues are metabolically and functionally compromised. To address this hypothesis, we measured the velocity of mitochondrial movement in human transmitochondrial cybrid "cytoplasmic hybrid" neuronal cells bearing mitochondrial DNA from patients with sporadic PD and disease-free age-matched volunteer controls (CNT). The absorption of low level, near-infrared laser light by components of the mitochondrial electron transport chain (mtETC) enhances mitochondrial metabolism, stimulates oxidative phosphorylation and improves redox capacity. PD and CNT cybrid neuronal cells were exposed to near-infrared laser light to determine if the velocity of mitochondrial movement can be restored by low level light therapy (LLLT). Axonal transport of labeled mitochondria was documented by time lapse microscopy in dopaminergic PD and CNT cybrid neuronal cells before and after illumination with an 810 nm diode laser (50 mW/cm2) for 40 seconds. Oxygen utilization and assembly of mtETC complexes were also determined. RESULTS: The velocity of mitochondrial movement in PD cybrid neuronal cells (0.175 +/- 0.005 SEM) was significantly reduced (p < 0.02) compared to mitochondrial movement in disease free CNT cybrid neuronal cells (0.232 +/- 0.017 SEM). For two hours after LLLT, the average velocity of mitochondrial movement in PD cybrid neurites was significantly (p < 0.003) increased (to 0.224 +/- 0.02 SEM) and restored to levels comparable to CNT. Mitochondrial movement in CNT cybrid neurites was unaltered by LLLT (0.232 +/- 0.017 SEM). Assembly of complexes in the mtETC was reduced and oxygen utilization was altered in PD cybrid neuronal cells. PD cybrid neuronal cell lines with the most dysfunctional mtETC assembly and oxygen utilization profiles were least responsive to LLLT. CONCLUSION: The results from this study support our proposal that axonal transport is reduced in sporadic PD and that a single, brief treatment with near-infrared light can restore axonal transport to control levels. These results are the first demonstration that LLLT can increase axonal transport in model human dopaminergic neuronal cells and they suggest that LLLT could be developed as a novel treatment to improve neuronal function in patients with PD.

5.
Hum Gene Ther ; 20(8): 897-907, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19374590

ABSTRACT

Neurodegeneration in Parkinson's disease (PD) affects mainly dopaminergic neurons in the substantia nigra, where age-related, increasing percentages of cells lose detectable respiratory activity associated with depletion of intact mitochondrial DNA (mtDNA). Replenishment of mtDNA might improve neuronal bioenergetic function and prevent further cell death. We developed a technology ("ProtoFection") that uses recombinant human mitochondrial transcription factor A (TFAM) engineered with an N-terminal protein transduction domain (PTD) followed by the SOD2 mitochondrial localization signal (MLS) to deliver mtDNA cargo to the mitochondria of living cells. MTD-TFAM (MTD = PTD + MLS = "mitochondrial transduction domain") binds mtDNA and rapidly transports it across plasma membranes to mitochondria. For therapeutic proof-of-principle we tested ProtoFection technology in Parkinson's disease cybrid cells, using mtDNA generated from commercially available human genomic DNA (gDNA; Roche). Nine to 11 weeks after single exposures to MTD-TFAM + mtDNA complex, PD cybrid cells with impaired respiration and reduced mtDNA genes increased their mtDNA gene copy numbers up to 24-fold, mtDNA-derived RNAs up to 35-fold, TFAM and ETC proteins, cell respiration, and mitochondrial movement velocities. Cybrid cells with no or minimal basal mitochondrial impairments showed reduced or no responses to treatment, suggesting the possibility of therapeutic selectivity. Exposure of PD but not control cybrid cells to MTD-TFAM protein alone or MTD-TFAM + mtDNA complex increased expression of PGC-1alpha, suggesting activation of mitochondrial biogenesis. ProtoFection technology for mitochondrial gene therapy holds promise for improving bioenergetic function in impaired PD neurons and needs additional development to define its pharmacodynamics and delineate its molecular mechanisms. It also is unclear whether single-donor gDNA for generating mtDNA would be a preferred therapeutic compared with the pooled gDNA used in this study.


Subject(s)
Genes, Mitochondrial , Genetic Therapy , Mitochondria/genetics , Mitochondria/pathology , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Cell Line, Tumor , Cell Respiration , DNA, Mitochondrial/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Humans , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Parkinson Disease/genetics , Protein Sorting Signals , Protein Structure, Tertiary , Small Ubiquitin-Related Modifier Proteins , Transcription Factors/chemistry , Transcription Factors/metabolism
6.
Exp Neurol ; 218(2): 320-5, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19328199

ABSTRACT

Parkinson's disease (PD) is the eponym attached to the most prevalent neurodegenerative movement disorder of adults, derived from observations of an early nineteenth century physician and paleontologist, James Parkinson, and is now recognized to encompass much more than a movement disorder clinically or dopamine neuron death pathologically. Most PD ( approximately 90%) is sporadic (sPD), is associated with mitochondrial deficiencies and has been studied in cell and animal models arising from the use of mitochondrial toxins that unfortunately have not predicted clinical efficacy to slow disease progression in humans. We have extensively studied the cytoplasmic hybrid ("cybrid") model of sPD in which donor mtDNAs are introduced into and expressed in neural tumor cells with identical nuclear genetic and environmental backgrounds. sPD cybrids demonstrate many abnormalities in which increased oxidative stress drives downstream antioxidant response and cell death activating signaling pathways. sPD cybrids regulate mitochondrial ETC genes and gene ontology families like sPD brain. sPD cybrids spontaneously form Lewy bodies and Lewy neurites, linking mtDNA expression to neuropathology, and demonstrate impaired organelle transport in processes and reduced mitochondrial respiration. Our recent studies show that near-infrared laser light therapy normalizes mitochondrial movement and can stimulate respiration in sPD cybrid neurons, and mitochondrial gene therapy can restore respiration and stimulate mitochondrial ETC gene and protein expression. sPD cybrids have provided multiple lines of circumstantial evidence linking mtDNA to sPD pathogenesis and can serve as platforms for therapy development. sPD cybrid models can be improved by the use of non-tumor human stem cell-derived neural precursor cells and by an introduction of postmortem brain mtDNA to test its causality directly.


Subject(s)
DNA, Mitochondrial/metabolism , Hybrid Cells/metabolism , Neurons/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Animals , Cell Death , Cell Line, Tumor , DNA, Mitochondrial/genetics , Gene Expression , Humans , Hybrid Cells/pathology , Neurons/pathology , Oxidative Stress , Parkinson Disease/pathology , Signal Transduction
7.
Biochim Biophys Acta ; 1792(1): 68-74, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18973805

ABSTRACT

We have studied sporadic Parkinson's disease (sPD) from expression of patient mitochondrial DNA (mtDNA) in neural cells devoid of their own mtDNA, the "cybrid" model. In spite of reproducing several properties of sPD brain, it remains unclear whether sPD cybrid cells reflect more complex sPD brain bioenergetic pathophysiology. We characterized and correlated respiration of intact sPD cybrid cells with electron transport chain (ETC) protein assembly, complex I ETC gene expression and ETC protein levels in sPD brain. We also assayed expression for multiple ETC genes coded by mtDNA and nuclear DNA (nDNA) in sPD cybrid cells and brain. sPD cybrid cells have reduced levels of mtDNA genes, variable compensatory normalization of mitochondrial gene expression and show robust correlations with mitochondrial ETC gene expression in sPD brains. Relationships among ETC protein levels predict impaired complex I-mediated respiration in sPD brain. That sPD cybrid cells and sPD brain samples show very correlated regulation of nDNA and mtDNA ETC transcriptomes suggests similar bioenergetic physiologies. We propose that further insights into sPD pathogenesis will follow elucidation of mechanisms leading to reduced mtDNA gene levels in sPD cybrids. This will require characterization of the abnormalities and dynamics of mtDNA changes propagated through sPD cybrids over time.


Subject(s)
Brain/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Cell Respiration , DNA, Mitochondrial/genetics , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Gene Expression , Humans , Hybrid Cells , Molecular Biology , Neurons/metabolism , Parkinson Disease/etiology
8.
Mol Neurodegener ; 3: 21, 2008 Dec 29.
Article in English | MEDLINE | ID: mdl-19114014

ABSTRACT

BACKGROUND: Parkinson's disease, the most common adult neurodegenerative movement disorder, demonstrates a brain-wide pathology that begins pre-clinically with alpha-synuclein aggregates ("Lewy neurites") in processes of gut enteric and vagal motor neurons. Rostral progression into substantia nigra with death of dopamine neurons produces the motor impairment phenotype that yields a clinical diagnosis. The vast majority of Parkinson's disease occurs sporadically, and current models of sporadic Parkinson's disease (sPD) can utilize directly infused or systemic neurotoxins. RESULTS: We developed a differentiation protocol for human SH-SY5Y neuroblastoma that yielded non-dividing dopaminergic neural cells with long processes that we then exposed to 50 nM rotenone, a complex I inhibitor used in Parkinson's disease models. After 21 days of rotenone, ~60% of cells died. Their processes retracted and accumulated ASYN-(+) and UB-(+) aggregates that blocked organelle transport. Mitochondrial movement velocities were reduced by 8 days of rotenone and continued to decline over time. No cytoplasmic inclusions resembling Lewy bodies were observed. Gene microarray analyses showed that the majority of genes were under-expressed. qPCR analyses of 11 mtDNA-encoded and 10 nDNA-encoded mitochondrial electron transport chain RNAs' relative expressions revealed small increases in mtDNA-encoded genes and lesser regulation of nDNA-encoded ETC genes. CONCLUSION: Subacute rotenone treatment of differentiated SH-SY5Y neuroblastoma cells causes process retraction and partial death over several weeks, slowed mitochondrial movement in processes and appears to reproduce the Lewy neuritic changes of early Parkinson's disease pathology but does not cause Lewy body inclusions. The overall pattern of transcriptional regulation is gene under-expression with minimal regulation of ETC genes in spite of rotenone's being a complex I toxin. This rotenone-SH-SY5Y model in a differentiated human neural cell mimics changes of early Parkinson's disease and may be useful for screening therapeutics for neuroprotection in that disease stage.

9.
J Neurochem ; 97(3): 724-36, 2006 May.
Article in English | MEDLINE | ID: mdl-16606371

ABSTRACT

Cortical nitric oxide (NO) production increases during hypoxia/ischemia in the immature brain and is associated with both neurotoxicity and mitochondrial dysfunction. Mitochondrial redistribution within the cell is critical to normal neuronal function, however, the effects of hypoxia on mitochondrial dynamics are not known. This study tested the hypothesis that hypoxia impairs mitochondrial movement via NO-mediated pathways. Fluorescently labeled mitochondria were studied using time-lapse digital video microscopy in cultured cortical neurons exposed either to hypoxia/re-oxygenation or to diethyleneamine/nitric oxide adduct, DETA-NO (100-500 microm). Two NO synthase inhibitors, were used to determine NO specificity. Mitochondrial mean velocity, the percentage of movement (i.e. the time spent moving) and mitochondrial morphology were analyzed. Exposure to hypoxia reduced mitochondrial movement to 10.4 +/- 1.3% at 0 h and 7.4 +/- 1.7% at 1 h of re-oxygenation, versus 25.6 +/- 1.4% in controls (p < 0.05). Mean mitochondrial velocity (microm s(-1)) decreased from 0.374 +/- 0.01 in controls to 0.146 +/- 0.01 at 0 h and 0.177 +/- 0.02 at 1 h of re-oxygenation (p < 0.001). Exposure to DETA-NO resulted in a significant decrease in mean mitochondrial velocity at all tested time points. Treatment with NG-nitro-L-arginine methyl ester (L-NAME) prevented the hypoxia-induced decrease in mitochondrial movement at 0 h (30.1 +/- 1.6%) and at 1 h (26.1 +/- 9%) of re-oxygenation. Exposure to either hypoxia/re-oxygenation or NO also resulted in the rapid decrease in mitochondrial size. Both hypoxia and NO exposure result in impaired mitochondrial movement and morphology in cultured cortical neurons. As the effect of hypoxia on mitochondrial movement and morphology can be partially prevented by a nitric oxide synthase (NOS) inhibitor, these data suggest that an NO-mediated pathway is at least partially involved.


Subject(s)
Cell Hypoxia/drug effects , Cerebral Cortex/cytology , Free Radical Scavengers/pharmacology , Mitochondria/drug effects , Neurons/drug effects , Nitric Oxide/pharmacology , Animals , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Embryo, Mammalian , Enzyme Inhibitors/pharmacology , Luminescent Agents/pharmacokinetics , Microscopy, Video/methods , Mitochondria/metabolism , Mitochondria/physiology , NG-Nitroarginine Methyl Ester/pharmacology , Organic Chemicals/pharmacokinetics , Oxygen/pharmacology , Rats , Rats, Sprague-Dawley , Time Factors , Triazenes/pharmacology
10.
Antioxid Redox Signal ; 7(9-10): 1101-9, 2005.
Article in English | MEDLINE | ID: mdl-16115014

ABSTRACT

The axonal transport and function of organelles like mitochondria and lysosomes may be impaired and play an important role in the pathogenesis of Alzheimer's disease (AD). Unique cybrid cell lines that model AD pathology were created by fusing platelets containing mitochondria from age-matched AD and control volunteers with mitochondrial DNA-free SH-SY5Y human neuroblastoma cells. These cybrid lines were differentiated to form process-bearing neuronal cells. Mitochondria and lysosomes in the neurites of each cybrid line were fluorescently labeled to determine the kinetics of organelle movement. The mitochondria in AD cybrid neurites were elongate, whereas the mitochondria in control cybrid neurites were short and more punctate. The mean velocity of mitochondrial movement, as well as the percentage of moving mitochondria, was significantly reduced in AD cybrids. The velocity of lysosomal movement was also reduced in the processes of AD cybrid cells, suggesting that the axonal transport machinery may be compromised in cybrid cell lines that contain mitochondrial DNA derived from AD patients. Reduced mitochondrial and lysosomal movement in susceptible neurons may compromise function in metabolically demanding structures like synaptic terminals and participate in the terminal degeneration that is characteristic of AD.


Subject(s)
Alzheimer Disease/metabolism , Cell Culture Techniques , Mitochondria/metabolism , Aged , Axons/metabolism , Blood Platelets , Case-Control Studies , Cell Differentiation , Cell Line , Cell Line, Tumor , DNA/chemistry , DNA, Mitochondrial/metabolism , Electron Transport , Female , Humans , Kinetics , Lysosomes/metabolism , Male , Middle Aged , Neurons/metabolism , Presynaptic Terminals , Reactive Oxygen Species , Synapses/pathology
11.
J Neurochem ; 88(4): 800-12, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14756800

ABSTRACT

Many models of Parkinson's disease (PD) have succeeded in replicating dopaminergic neuron loss or alpha-synuclein aggregation but not the formation of classical Lewy bodies, the pathological hallmark of PD. Our cybrid model of sporadic PD was created by introducing the mitochondrial genes from PD patients into neuroblastoma cells that lack mitochondrial DNA. Previous studies using cybrids have shown that information encoded by mitochondrial DNA in patients contributes to many pathogenic features of sporadic PD. In this paper, we report the generation of fibrillar and vesicular inclusions in a long-term cybrid cell culture model that replicates the essential antigenic and structural features of Lewy bodies in PD brain without the need for exogenous protein expression or inhibition of mitochondrial or proteasomal function. The inclusions generated by PD cybrid cells stained with eosin, thioflavin S, and antibodies to alpha-synuclein, ubiquitin, parkin, synphilin-1, neurofilament, beta-tubulin, the proteasome, nitrotyrosine, and cytochrome c. Future studies of these cybrids will enable us to better understand how Lewy bodies form and what role they play in the pathogenesis of PD.


Subject(s)
DNA, Mitochondrial/genetics , Lewy Bodies/metabolism , Neurons/pathology , Parkinson Disease/metabolism , Transgenes/physiology , Tyrosine/analogs & derivatives , Aged , Blotting, Western , Carrier Proteins/metabolism , Case-Control Studies , Cell Line , Cysteine Endopeptidases/metabolism , Cytochromes c/metabolism , DNA, Mitochondrial/physiology , Electron Transport Complex I/metabolism , Female , Humans , Immunohistochemistry , Lewy Bodies/genetics , Lewy Bodies/ultrastructure , Male , Microscopy, Confocal , Microscopy, Electron/methods , Middle Aged , Multienzyme Complexes/metabolism , Nerve Tissue Proteins/metabolism , Neuroblastoma , Neurofilament Proteins/metabolism , Neurons/metabolism , Parkinson Disease/genetics , Precipitin Tests , Proteasome Endopeptidase Complex , Staining and Labeling , Synucleins , Tubulin/metabolism , Tyrosine/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , alpha-Synuclein
12.
Neurobiol Dis ; 15(1): 29-39, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14751768

ABSTRACT

We created and studied new cybrid cell lines from sporadic Alzheimer's disease (SAD) or control (CTL) subjects to assess mitochondrial abnormalities just after metabolic selection ("early passage") and again six passages later ("late passage"). Cytochrome oxidase (CO) activities in early passage SAD cybrids created independently from the same platelet samples were highly correlated. Early passage SAD and CTL cybrids showed equivalent mitochondrial morphologies. Late passage SAD cybrids showed increased mitochondrial number, reduced mitochondrial size, and an approximately eightfold increase in morphologically abnormal mitochondria. Deficiency of SAD cybrid mitochondrial membrane potentials (DeltaPsi(M)) increased with passage. Mitochondrial bromodeoxyuridine (BrdU) uptake to estimate mitochondrial DNA (mtDNA) synthesis did not change with passage in CTL but increased in SAD cybrids. With time in culture, SAD mtDNA appears to replicate faster in cybrids, yielding cells with relative worsening of bioenergetic function. Metabolically deleterious SAD mitochondrial genes, like those in yeast, may have a replicative advantage over nondeleterious mitochondrial genes that assume dominance in CTL cybrids.


Subject(s)
Alzheimer Disease/metabolism , Hybrid Cells/metabolism , Mitochondria/metabolism , Aged , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Cell Line , DNA Replication/physiology , DNA, Mitochondrial/biosynthesis , Electron Transport Complex IV/metabolism , Energy Metabolism/physiology , Gene Expression Regulation/physiology , Humans , Hybrid Cells/pathology , Hybrid Cells/ultrastructure , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Intracellular Membranes/metabolism , Intracellular Membranes/pathology , Intracellular Membranes/ultrastructure , Microscopy, Electron , Middle Aged , Mitochondria/pathology , Mitochondria/ultrastructure , Models, Biological
13.
Stroke ; 33(3): 816-24, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11872909

ABSTRACT

BACKGROUND AND PURPOSE: Mitochondrial swelling is one of the most striking and initial ultrastructural changes after acute brain ischemia. The purpose of the present study was to examine the role of reperfusion of the cerebral cortex after transient focal cerebral ischemia on neuronal mitochondrial damage. METHODS: Male Sprague-Dawley rats (n=16) were subjected to either temporary or permanent occlusion of the middle cerebral artery and bilateral carotid arteries. Three experimental conditions were compared: group I, permanent ischemia (3, 5, and 24 hours); group II, transient ischemia (2, 24 hours of reperfusion); and sham surgery. Anesthetized rats were killed by cardiac perfusion, and brain tissue was removed ipsilaterally and contralaterally from the ischemic core section of the frontoparietal cortex. Fixed tissue was prepared for electron microscopic examination, and electron microscopic thin sections of random neurons were photographed. Perinuclear neuronal mitochondria were analyzed in a blinded manner for qualitative ultrastructural changes (compared with sham control) by 2 independent investigators using an objective grading system. RESULTS: Cortical neuronal mitochondria exposed to severe ischemic/reperfusion conditions demonstrated dramatic signs of injury in the form of condensation, increased matrix density, and deposits of electron-dense material followed by disintegration by 24 hours. In contrast, mitochondria exposed to an equivalent time of permanent ischemia demonstrated increasing loss of matrix density with pronounced swelling followed by retention of their shape by 24 hours. CONCLUSIONS: Neuronal mitochondria undergoing transient versus permanent ischemia exhibit significantly different patterns of injury. Structural damage to neuronal mitochondria of the neocortex occurs more acutely and to a greater extent during the reperfusion phase in comparison to ischemic conditions alone. Further research is in progress to delineate the role of oxygen free radical production in the observed mitochondrial damage during postischemic reoxygenation.


Subject(s)
Brain Ischemia/pathology , Mitochondria/pathology , Mitochondria/ultrastructure , Neurons/pathology , Neurons/ultrastructure , Animals , Brain/blood supply , Brain/pathology , Brain/ultrastructure , Brain Ischemia/etiology , Disease Models, Animal , Disease Progression , Infarction, Middle Cerebral Artery/complications , Ischemic Attack, Transient/etiology , Ischemic Attack, Transient/pathology , Male , Rats , Rats, Sprague-Dawley , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL