Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 115(2): 026404, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-26207489

ABSTRACT

We report on the energy- and momentum-resolved optical response of black phosphorus (BP) in its bulk form. Along the armchair direction of the puckered layers, we find a highly dispersive mode that is strongly suppressed in the perpendicular (zigzag) direction. This mode emerges out of the single-particle continuum for finite values of momentum and is therefore interpreted as an exciton. We argue that this exciton, which has already been predicted theoretically for phosphorene-the monolayer form of BP-can be detected by conventional optical spectroscopy in the two-dimensional case and might pave the way for optoelectronic applications of this emerging material.

2.
Phys Rev Lett ; 108(1): 016403, 2012 Jan 06.
Article in English | MEDLINE | ID: mdl-22304275

ABSTRACT

We present angle-resolved photoemission studies of (La{1-z}Pr{z}){2-2x}Sr{1+2x}Mn{2}O{7} with x=0.4 and z=0.1, 0.2, and 0.4 along with density functional theory calculations and x-ray scattering data. Our results show that the bilayer splitting in the ferromagnetic metallic phase of these materials is small, if not completely absent. The charge carriers are therefore confined to a single MnO{2} layer, which in turn results in a strongly nested Fermi surface. In addition to this, the spectral function also displays clear signatures of an electronic ordering instability well below the Fermi level. The increase of the corresponding interaction strength with z and its magnitude of ∼400 meV make the coupling to a bare phonon highly unlikely. Instead we conclude that fluctuating order, involving electronic and lattice degrees of freedom, causes the observed renormalization of the spectral features.

SELECTION OF CITATIONS
SEARCH DETAIL
...