Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 196: 115636, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37813060

ABSTRACT

The goal of this study was to identify the presence of microplastics on the beach near a refinery in the central coast of Vietnam. In this study, 11 sampling sites were selected within a length of 300 m of the beach. The results showed that microplastics were presented in all collected samples with an average concentration of 1582 ± 660 MPs/kg. Fibers were the predominant shape of microplastics found in the samples, which accounted for 57.11 %, while the rest were classified as fragments. The average size of microplastics varied greatly around 83.1 ± 74.3 µm with the vast majority having a size smaller than 50 µm (41.84 %). A total of 11 polymers of microplastics were detected from collected samples, Polyethylene Terephthalate was the main polymer with 46.43 %. The pollution load index of microplastics was 3.15 showing that refinery activities could expose microplastic to the environment.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Vietnam , Water Pollutants, Chemical/analysis , Environmental Monitoring , Polymers , Risk Assessment
2.
Sci Total Environ ; 699: 134267, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31677468

ABSTRACT

In the Red River Delta, Vietnam, arsenic (As) contamination of groundwater is a serious problem where more than seventeen million people are affected. Millions of people in this area are unable to access clean water from the existing centralized water treatment systems. They also cannot afford to buy expensive household water filters. Similar dangerous situations exist in many other countries and for this reason there is an urgent need to develop a cost-effective decentralized filtration system using new low-cost adsorbents for removing arsenic. In this study, seven locally available low-cost materials were tested for arsenic removal by conducting batch adsorption experiments. Of these materials, a natural laterite (48.7% Fe2O3 and 18.2% Al2O3) from Thach That (NLTT) was deemed the most suitable adsorbent based on arsenic removal performance, local availability, stability/low risk and cost (US$ 0.10/kg). Results demonstrated that the adsorption process was less dependent on the solution pH from 2.0 to 10. The coexisting anions competed with As(III) and As(V) in the order, phosphate > silicate > bicarbonate > sulphate > chloride. The adsorption process reached a fast equilibrium at approximately 120-360 min, depending on the initial arsenic concentrations. The Langmuir maximum adsorption capacities of NLTT at 30 °C were 512 µg/g for As(III) and 580 µg/g for As(V), respectively. Thermodynamic study conducted at 10 °C, 30 °C, and 50 °C suggested that the adsorption process of As(III) and As(V) was spontaneous and endothermic in nature. A water filtration system packed with NLTT was tested in a childcare centre in the most disadvantaged community in Ha Nam province, Vietnam, to determine arsenic removal performance in an operation lasting six months. Findings showed that the system reduced total arsenic concentration in groundwater from 122 to 237 µg/L to below the Vietnam drinking water standard of 10 µg/L.


Subject(s)
Arsenic/analysis , Filtration/economics , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Groundwater , Vietnam
3.
J Environ Manage ; 239: 235-243, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30903835

ABSTRACT

Arsenic is a major drinking water contaminant in many countries causing serious health hazards, and therefore, attempts are being made to remove it so that people have safe drinking water supplies. The effectiveness of arsenic removal from As(V) solutions using granular activated carbon (GAC) (zero point of charge (ZPC) pH 3.2) and iron incorporated GAC (GAC-Fe) (ZPC pH 8.0) was studied at 25 ±â€¯1 °C. The batch study confirmed that GAC-Fe had higher Langmuir adsorption capacity at pH 6 (1.43 mg As/g) than GAC (1.01 mg As/g). Adsorption data of GAC-Fe fitted the Freundlich model better than the Langmuir model, thus indicating the presence of heterogeneous adsorption sites. Weber and Morris plots of the kinetic adsorption data suggested intra-particle diffusion into meso and micro pores in GAC. The column adsorption study revealed that 2-4 times larger water volumes can be treated by GAC-Fe than GAC, reducing the arsenic concentration from 100 µg/L to the WHO guideline of 10 µg/L. The volume of water treated increased with a decrease in flow velocity and influent arsenic concentration. The study indicates the high potential of GAC-Fe to remove arsenic from contaminated drinking waters in practical column filters.


Subject(s)
Arsenic , Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal , Iron
SELECTION OF CITATIONS
SEARCH DETAIL
...