Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
iScience ; 27(6): 110109, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38989321

ABSTRACT

TDP-43 nuclear clearance and cytoplasmic aggregation are hallmarks of TDP-43 proteinopathies. We recently demonstrated that binding to endogenous nuclear GU-rich RNAs sequesters TDP-43 in the nucleus by restricting its passive nuclear export. Here, we tested the feasibility of synthetic RNA oligonucleotide-mediated augmentation of TDP-43 nuclear localization. Using biochemical assays, we compared the ability of GU-rich oligonucleotides to engage in multivalent, RRM-dependent binding with TDP-43. When transfected into cells, (GU)16 attenuated TDP-43 mislocalization induced by transcriptional blockade or RanGAP1 ablation. Clip34nt and (GU)16 accelerated TDP-43 nuclear re-import after cytoplasmic mislocalization. RNA pulldowns confirmed that multivalent GU-oligonucleotides induced high molecular weight RNP complexes, incorporating TDP-43 and possibly other GU-binding proteins. Transfected GU-repeat oligos disrupted TDP-43 cryptic exon repression, likely by diverting TDP-43 from endogenous RNAs, except for Clip34nt that contains interspersed A and C. Thus, exogenous multivalent GU-RNAs can promote TDP-43 nuclear localization, though pure GU-repeat motifs impair TDP-43 function.

2.
Mol Neurodegener ; 19(1): 45, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853250

ABSTRACT

BACKGROUND: Cytoplasmic inclusions and loss of nuclear TDP-43 are key pathological features found in several neurodegenerative disorders, suggesting both gain- and loss-of-function mechanisms of disease. To study gain-of-function, TDP-43 overexpression has been used to generate in vitro and in vivo model systems. METHODS: We analyzed RNA-seq datasets from mouse and human neurons overexpressing TDP-43 to explore species specific splicing patterns. We explored the dynamics between TDP-43 levels and exon repression in vitro. Furthermore we analyzed human brain samples and publicly available RNA datasets to explore the relationship between exon repression and disease. RESULTS: Our study shows that excessive levels of nuclear TDP-43 protein lead to constitutive exon skipping that is largely species-specific. Furthermore, while aberrant exon skipping is detected in some human brains, it is not correlated with disease, unlike the incorporation of cryptic exons that occurs after loss of TDP-43. CONCLUSIONS: Our findings emphasize the need for caution in interpreting TDP-43 overexpression data and stress the importance of controlling for exon skipping when generating models of TDP-43 proteinopathy.


Subject(s)
DNA-Binding Proteins , Exons , Humans , Exons/genetics , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mice , Neurons/metabolism , Brain/metabolism , RNA Splicing/genetics , Cell Nucleus/metabolism , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/metabolism , TDP-43 Proteinopathies/pathology
3.
Mol Cell ; 84(7): 1271-1289.e12, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38387462

ABSTRACT

Polycomb repressive complex 2 (PRC2) is reported to bind to many RNAs and has become a central player in reports of how long non-coding RNAs (lncRNAs) regulate gene expression. Yet, there is a growing discrepancy between the biochemical evidence supporting specific lncRNA-PRC2 interactions and functional evidence demonstrating that PRC2 is often dispensable for lncRNA function. Here, we revisit the evidence supporting RNA binding by PRC2 and show that many reported interactions may not occur in vivo. Using denaturing purification of in vivo crosslinked RNA-protein complexes in human and mouse cell lines, we observe a loss of detectable RNA binding to PRC2 and chromatin-associated proteins previously reported to bind RNA (CTCF, YY1, and others), despite accurately mapping bona fide RNA-binding sites across others (SPEN, TET2, and others). Taken together, these results argue for a critical re-evaluation of the broad role of RNA binding to orchestrate various chromatin regulatory mechanisms.


Subject(s)
Polycomb Repressive Complex 2 , RNA, Long Noncoding , Animals , Mice , Humans , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Chromatin/genetics , Binding Sites
4.
bioRxiv ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-37577513

ABSTRACT

TDP-43 nuclear clearance and cytoplasmic aggregation are hallmarks of TDP-43 proteinopathies. We recently demonstrated that binding to endogenous nuclear GU-rich RNAs sequesters TDP-43 in the nucleus by restricting its passive nuclear export. Here, we tested the feasibility of synthetic RNA oligonucleotide-mediated augmentation of TDP-43 nuclear localization. Using biochemical assays, we compared the ability of GU-rich oligonucleotides to engage in multivalent, RRM-dependent binding with TDP-43. When transfected into cells, (GU)16 attenuated TDP-43 mislocalization induced by transcriptional blockade or RanGAP1 ablation. Clip34nt and (GU)16 accelerated TDP-43 nuclear re-import after cytoplasmic mislocalization. RNA pulldowns confirmed that multivalent GU-oligonucleotides induced high molecular weight RNP complexes, incorporating TDP-43 and possibly other GU-binding proteins. Transfected GU-repeat oligos disrupted TDP-43 cryptic exon repression, likely by diverting TDP-43 from endogenous RNAs, except for Clip34nt which contains interspersed A and C. Thus, exogenous multivalent GU-RNAs can promote TDP-43 nuclear localization, though pure GU-repeat motifs impair TDP-43 function.

5.
bioRxiv ; 2023 May 12.
Article in English | MEDLINE | ID: mdl-37215013

ABSTRACT

Cytoplasmic inclusions and loss of nuclear TDP-43 are key pathological features found in several neurodegenerative disorders, suggesting both gain- and loss-of-function mechanisms of disease. To study gain-of-function, TDP-43 overexpression has been used to generate in vitro and in vivo model systems. Our study shows that excessive levels of nuclear TDP-43 protein lead to constitutive exon skipping that is largely species-specific. Furthermore, while aberrant exon skipping is detected in some human brains, it is not correlated with disease, unlike the incorporation of cryptic exons that occurs after loss of TDP-43. Our findings emphasize the need for caution in interpreting TDP-43 overexpression data, and stress the importance of controlling for exon skipping when generating models of TDP-43 proteinopathy. Understanding the subtle aspects of TDP-43 toxicity within different subcellular locations is essential for the development of therapies targeting neurodegenerative disease.

6.
Nat Commun ; 13(1): 5773, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36182931

ABSTRACT

Precise and reliable cell-specific gene delivery remains technically challenging. Here we report a splicing-based approach for controlling gene expression whereby separate translational reading frames are coupled to the inclusion or exclusion of mutated, frameshifting cell-specific alternative exons. Candidate exons are identified by analyzing thousands of publicly available RNA sequencing datasets and filtering by cell specificity, conservation, and local intron length. This method, which we denote splicing-linked expression design (SLED), can be combined in a Boolean manner with existing techniques such as minipromoters and viral capsids. SLED can use strong constitutive promoters, without sacrificing precision, by decoupling the tradeoff between promoter strength and selectivity. AAV-packaged SLED vectors can selectively deliver fluorescent reporters and calcium indicators to various neuronal subtypes in vivo. We also demonstrate gene therapy utility by creating SLED vectors that can target PRPH2 and SF3B1 mutations. The flexibility of SLED technology enables creative avenues for basic and translational research.


Subject(s)
Calcium , RNA Splicing , Alternative Splicing/genetics , Base Sequence , Exons/genetics , Gene Expression Regulation , Introns/genetics
7.
Sci Adv ; 7(22)2021 05.
Article in English | MEDLINE | ID: mdl-34049878

ABSTRACT

Hypothalamic tanycytes, radial glial cells that share many features with neuronal progenitors, can generate small numbers of neurons in the postnatal hypothalamus, but the identity of these neurons and the molecular mechanisms that control tanycyte-derived neurogenesis are unknown. In this study, we show that tanycyte-specific disruption of the NFI family of transcription factors (Nfia/b/x) robustly stimulates tanycyte proliferation and tanycyte-derived neurogenesis. Single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) analysis reveals that NFI (nuclear factor I) factors repress Sonic hedgehog (Shh) and Wnt signaling in tanycytes and modulation of these pathways blocks proliferation and tanycyte-derived neurogenesis in Nfia/b/x-deficient mice. Nfia/b/x-deficient tanycytes give rise to multiple mediobasal hypothalamic neuronal subtypes that can mature, fire action potentials, receive synaptic inputs, and selectively respond to changes in internal states. These findings identify molecular mechanisms that control tanycyte-derived neurogenesis, which can potentially be targeted to selectively remodel the hypothalamic neural circuitry that controls homeostatic physiological processes.


Subject(s)
Ependymoglial Cells , Hedgehog Proteins , Animals , Ependymoglial Cells/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Hypothalamus/metabolism , Mammals/metabolism , Mice , Neurogenesis/genetics , Neurons/metabolism
8.
Science ; 370(6519)2020 11 20.
Article in English | MEDLINE | ID: mdl-33004674

ABSTRACT

Injury induces retinal Müller glia of certain cold-blooded vertebrates, but not those of mammals, to regenerate neurons. To identify gene regulatory networks that reprogram Müller glia into progenitor cells, we profiled changes in gene expression and chromatin accessibility in Müller glia from zebrafish, chick, and mice in response to different stimuli. We identified evolutionarily conserved and species-specific gene networks controlling glial quiescence, reactivity, and neurogenesis. In zebrafish and chick, the transition from quiescence to reactivity is essential for retinal regeneration, whereas in mice, a dedicated network suppresses neurogenic competence and restores quiescence. Disruption of nuclear factor I transcription factors, which maintain and restore quiescence, induces Müller glia to proliferate and generate neurons in adult mice after injury. These findings may aid in designing therapies to restore retinal neurons lost to degenerative diseases.


Subject(s)
Cellular Reprogramming/genetics , Ependymoglial Cells/cytology , Gene Regulatory Networks , Nerve Regeneration/genetics , Neurogenesis/genetics , Animals , Chickens , Gene Expression Regulation, Developmental , Mice , RNA-Seq , Zebrafish
9.
Cell ; 174(3): 744-757.e24, 2018 07 26.
Article in English | MEDLINE | ID: mdl-29887377

ABSTRACT

Eukaryotic genomes are packaged into a 3-dimensional structure in the nucleus. Current methods for studying genome-wide structure are based on proximity ligation. However, this approach can fail to detect known structures, such as interactions with nuclear bodies, because these DNA regions can be too far apart to directly ligate. Accordingly, our overall understanding of genome organization remains incomplete. Here, we develop split-pool recognition of interactions by tag extension (SPRITE), a method that enables genome-wide detection of higher-order interactions within the nucleus. Using SPRITE, we recapitulate known structures identified by proximity ligation and identify additional interactions occurring across larger distances, including two hubs of inter-chromosomal interactions that are arranged around the nucleolus and nuclear speckles. We show that a substantial fraction of the genome exhibits preferential organization relative to these nuclear bodies. Our results generate a global model whereby nuclear bodies act as inter-chromosomal hubs that shape the overall packaging of DNA in the nucleus.


Subject(s)
Cell Nucleus/ultrastructure , Chromosome Mapping/methods , Chromosomes/physiology , Cell Nucleolus , Cell Nucleus/physiology , Chromosomes/genetics , DNA/physiology , Eukaryota , Genome/genetics , Genome/physiology , Humans , Structure-Activity Relationship
10.
Environ Microbiol ; 19(6): 2434-2452, 2017 06.
Article in English | MEDLINE | ID: mdl-28418097

ABSTRACT

Marine Thaumarchaeota are abundant ammonia-oxidizers but have few representative laboratory-cultured strains. We report the cultivation of Candidatus Nitrosomarinus catalina SPOT01, a novel strain that is less warm-temperature tolerant than other cultivated Thaumarchaeota. Using metagenomic recruitment, strain SPOT01 comprises a major portion of Thaumarchaeota (4-54%) in temperate Pacific waters. Its complete 1.36 Mbp genome possesses several distinguishing features: putative phosphorothioation (PT) DNA modification genes; a region containing probable viral genes; and putative urea utilization genes. The PT modification genes and an adjacent putative restriction enzyme (RE) operon likely form a restriction modification (RM) system for defence from foreign DNA. PacBio sequencing showed >98% methylation at two motifs, and inferred PT guanine modification of 19% of possible TGCA sites. Metagenomic recruitment also reveals the putative virus region and PT modification and RE genes are present in 18-26%, 9-14% and <1.5% of natural populations at 150 m with ≥85% identity to strain SPOT01. The presence of multiple probable RM systems in a highly streamlined genome suggests a surprising importance for defence from foreign DNA for dilute populations that infrequently encounter viruses or other cells. This new strain provides new insights into the ecology, including viral interactions, of this important group of marine microbes.


Subject(s)
Archaea , DNA, Archaeal/genetics , Genome, Archaeal/genetics , Viruses/genetics , Aquatic Organisms/genetics , Archaea/classification , Archaea/genetics , Archaea/virology , Base Sequence , Metagenomics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL