Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 5680, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35383204

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the infectious disease COVID-19, which has rapidly become an international pandemic with significant impact on healthcare systems and the global economy. To assist antiviral therapy and vaccine development efforts, we performed a natural history/time course study of SARS-CoV-2 infection in ferrets to characterise and assess the suitability of this animal model. Ten ferrets of each sex were challenged intranasally with 4.64 × 104 TCID50 of SARS-CoV-2 isolate Australia/VIC01/2020 and monitored for clinical disease signs, viral shedding, and tissues collected post-mortem for histopathological and virological assessment at set intervals. We found that SARS-CoV-2 replicated in the upper respiratory tract of ferrets with consistent viral shedding in nasal wash samples and oral swab samples up until day 9. Infectious SARS-CoV-2 was recovered from nasal washes, oral swabs, nasal turbinates, pharynx, and olfactory bulb samples within 3-7 days post-challenge; however, only viral RNA was detected by qRT-PCR in samples collected from the trachea, lung, and parts of the gastrointestinal tract. Viral antigen was seen exclusively in nasal epithelium and associated sloughed cells and draining lymph nodes upon immunohistochemical staining. Due to the absence of clinical signs after viral challenge, our ferret model is appropriate for studying asymptomatic SARS-CoV-2 infections and most suitable for use in vaccine efficacy studies.


Subject(s)
COVID-19 , Ferrets , Animals , Nasal Mucosa , SARS-CoV-2 , Viral Load
2.
Transbound Emerg Dis ; 69(2): 297-307, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33400387

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is an emerging virus that has caused significant human morbidity and mortality since its detection in late 2019. With the rapid emergence has come an unprecedented programme of vaccine development with at least 300 candidates under development. Ferrets have proven to be an appropriate animal model for testing safety and efficacy of SARS-CoV-2 vaccines due to quantifiable virus shedding in nasal washes and oral swabs. Here, we outline our efforts early in the SARS-CoV-2 outbreak to propagate and characterize an Australian isolate of the virus in vitro and in an ex vivo model of human airway epithelium, as well as to demonstrate the susceptibility of domestic ferrets (Mustela putorius furo) to SARS-CoV-2 infection following intranasal challenge.


Subject(s)
COVID-19 , Ferrets , Animals , Australia , COVID-19/veterinary , COVID-19 Vaccines , Humans , SARS-CoV-2
3.
Genes (Basel) ; 12(6)2021 06 10.
Article in English | MEDLINE | ID: mdl-34200798

ABSTRACT

Highly pathogenic avian influenza viruses (HPAIVs) in gallinaceous poultry are associated with viral infection of the endothelium, the induction of a 'cytokine storm, and severe disease. In contrast, in Pekin ducks, HPAIVs are rarely endothelial tropic, and a cytokine storm is not observed. To date, understanding these species-dependent differences in pathogenesis has been hampered by the absence of a pure culture of duck and chicken endothelial cells. Here, we use our recently established in vitro cultures of duck and chicken aortic endothelial cells to investigate species-dependent differences in the response of endothelial cells to HPAIV H5N1 infection. We demonstrate that chicken and duck endothelial cells display a different transcriptional response to HPAI H5N1 infection in vitro-with chickens displaying a more pro-inflammatory response to infection. As similar observations were recorded following in vitro stimulation with the viral mimetic polyI:C, these findings were not specific to an HPAIV H5N1 infection. However, similar species-dependent differences in the transcriptional response to polyI:C were not observed in avian fibroblasts. Taken together, these data demonstrate that chicken and duck endothelial cells display a different response to HPAIV H5N1 infection, and this may help account for the species-dependent differences observed in inflammation in vivo.


Subject(s)
Chickens/immunology , Ducks/immunology , Endothelial Cells/virology , Influenza A Virus, H5N1 Subtype/pathogenicity , Animals , Cells, Cultured , Chickens/virology , Cytokines/genetics , Cytokines/metabolism , Ducks/virology , Endothelial Cells/immunology , Endothelium, Vascular/cytology , Species Specificity , Transcriptome
4.
ILAR J ; 62(1-2): 232-237, 2021 12 31.
Article in English | MEDLINE | ID: mdl-34157067

ABSTRACT

This case report discusses Type I hypersensitivity in ferrets following exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inoculum, observed during a study investigating the efficacy of candidate COVID-19 vaccines. Following a comprehensive internal root-cause investigation, it was hypothesized that prior prime-boost immunization of ferrets with a commercial canine C3 vaccine to protect against the canine distemper virus had resulted in primary immune response to fetal bovine serum (FBS) in the C3 preparation. Upon intranasal exposure to SARS-CoV-2 virus cultured in medium containing FBS, an allergic airway response occurred in 6 out of 56 of the ferrets. The 6 impacted ferrets were randomly dispersed across study groups, including different COVID-19 vaccine candidates, routes of vaccine candidate administration, and controls (placebo). The root-cause investigation and subsequent analysis determined that the allergic reaction was unrelated to the COVID-19 vaccine candidates under evaluation. Histological assessment suggested that the allergic response was characterized by eosinophilic airway disease; increased serum immunoglobulin levels reactive to FBS further suggested this response was caused by immune priming to FBS present in the C3 vaccine. This was further supported by in vivo studies demonstrating ferrets administered diluted FBS also presented clinical signs consistent with a hyperallergic response, while clinical signs were absent in ferrets that received a serum-free SARS-CoV-2 inoculum. It is therefore recommended that vaccine studies in higher order animals should consider the impact of welfare vaccination and use serum-free inoculum whenever possible.


Subject(s)
COVID-19 , Hypersensitivity, Immediate , Viral Vaccines , Animals , COVID-19 Vaccines , Dogs , Ferrets , SARS-CoV-2
5.
NPJ Vaccines ; 6(1): 67, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33972565

ABSTRACT

Vaccines against SARS-CoV-2 are likely to be critical in the management of the ongoing pandemic. A number of candidates are in Phase III human clinical trials, including ChAdOx1 nCoV-19 (AZD1222), a replication-deficient chimpanzee adenovirus-vectored vaccine candidate. In preclinical trials, the efficacy of ChAdOx1 nCoV-19 against SARS-CoV-2 challenge was evaluated in a ferret model of infection. Groups of ferrets received either prime-only or prime-boost administration of ChAdOx1 nCoV-19 via the intramuscular or intranasal route. All ChAdOx1 nCoV-19 administration combinations resulted in significant reductions in viral loads in nasal-wash and oral swab samples. No vaccine-associated adverse events were observed associated with the ChAdOx1 nCoV-19 candidate, with the data from this study suggesting it could be an effective and safe vaccine against COVID-19. Our study also indicates the potential for intranasal administration as a way to further improve the efficacy of this leading vaccine candidate.

6.
Virol J ; 14(1): 108, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28599659

ABSTRACT

BACKGROUND: Zika virus is an emerging pathogen of global importance. It has been responsible for recent outbreaks in the Americas and in the Pacific region. This study assessed five different mosquito species from the temperate climatic zone in Australia and included Aedes albopictus as a potentially invasive species. METHODS: Mosquitoes were orally challenged by membrane feeding with Zika virus strain of Cambodia 2010 origin, belonging to the Asian clade. Virus infection and dissemination were assessed by quantitative PCR on midgut and carcass after dissection. Transmission was assessed by determination of cytopathogenic effect of saliva (CPE) on Vero cells, followed by determination of 50% tissue culture infectious dose (TCID50) for CPE positive samples. Additionally, the presence of Wolbachia endosymbiont infection was assessed by qPCR and standard PCR. RESULTS: Culex mosquitoes were found unable to present Zika virus in saliva, as demonstrated by molecular as well as virological methods. Aedes aegypti, was used as a positive control for Zika infection and showed a high level of virus infection, dissemination and transmission. Local Aedes species, Ae. notoscriptus and, to a lesser degree, Ae. camptorhynchus were found to expel virus in their saliva and contained viral nucleic acid within the midgut. Molecular assessment identified low or no dissemination for these species, possibly due to low virus loads. Ae. albopictus from Torres Strait islands origin was shown as an efficient vector. Cx quinquefasciatus was shown to harbour Wolbachia endosymbionts at high prevalence, whilst no Wolbachia was found in Cx annulirostris. The Australian Ae. albopictus population was shown to harbour Wolbachia at high frequency. CONCLUSIONS: The risk of local Aedes species triggering large Zika epidemics in the southern parts of Australia is low. The potentially invasive Ae. albopictus showed high prevalence of virus in the saliva and constitutes a potential threat if this mosquito species becomes established in mainland Australia. Complete risk analysis of Zika transmission in the temperate zone would require an assessment of the impact of temperature on Zika virus replication within local and invasive mosquito species.


Subject(s)
Gastrointestinal Tract/virology , Mosquito Vectors/virology , RNA, Viral/analysis , Saliva/virology , Zika Virus/isolation & purification , Animals , Australia , Climate , Disease Transmission, Infectious , Humans , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Risk Assessment , Zika Virus/genetics , Zika Virus Infection/transmission
7.
PLoS Pathog ; 11(9): e1005143, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26325027

ABSTRACT

Although mosquitoes serve as vectors of many pathogens of public health importance, their response to viral infection is poorly understood. It also remains to be investigated whether viruses deploy some mechanism to be able to overcome this immune response. Here, we have used an RNA-Seq approach to identify differentially regulated genes in Culex quinquefasciatus cells following West Nile virus (WNV) infection, identifying 265 transcripts from various cellular pathways that were either upregulated or downregulated. Ubiquitin-proteasomal pathway genes, comprising 12% of total differentially regulated genes, were selected for further validation by real time RT-qPCR and functional analysis. It was found that treatment of infected cells with proteasomal inhibitor, MG-132, decreased WNV titers, indicating importance of this pathway during infection process. In infection models, the Culex ortholog of mammalian Cul4A/B (cullin RING ubiquitin ligase) was found to be upregulated in vitro as well as in vivo, especially in midguts of mosquitoes. Gene knockdown using dsRNA and overexpression studies indicated that Culex Cul4 acts as a pro-viral protein by degradation of CxSTAT via ubiquitin-proteasomal pathway. We also show that gene knockdown of Culex Cul4 leads to activation of the Jak-STAT pathway in mosquitoes leading to decrease viral replication in the body as well as saliva. Our results suggest a novel mechanism adopted by WNV to overcome mosquito immune response and increase viral replication.


Subject(s)
Culex/virology , Cullin Proteins/metabolism , Enzyme Induction , Immune Evasion , Insect Proteins/metabolism , Virus Replication , West Nile virus/physiology , Aedes/immunology , Aedes/metabolism , Aedes/virology , Animals , Cell Line , Culex/immunology , Culex/metabolism , Cullin Proteins/antagonists & inhibitors , Cullin Proteins/genetics , Dengue Virus/immunology , Dengue Virus/physiology , Female , Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/virology , Gene Knockdown Techniques , Insect Proteins/antagonists & inhibitors , Insect Proteins/genetics , Janus Kinases/antagonists & inhibitors , Janus Kinases/genetics , Janus Kinases/metabolism , RNA/antagonists & inhibitors , RNA/metabolism , RNA Interference , RNA, Viral/antagonists & inhibitors , RNA, Viral/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , STAT Transcription Factors/antagonists & inhibitors , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction , Transcriptome , West Nile virus/immunology , West Nile virus/isolation & purification
8.
J Virol ; 88(3): 1591-603, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24257609

ABSTRACT

Bovine ephemeral fever virus (BEFV) is an arthropod-borne rhabdovirus that is classified as the type species of the genus Ephemerovirus. In addition to the five canonical rhabdovirus structural proteins (N, P, M, G, and L), the large and complex BEFV genome contains several open reading frames (ORFs) between the G and L genes (α1, α2/α3, ß, and γ) encoding proteins of unknown function. We show that the 10.5-kDa BEFV α1 protein is expressed in infected cells and, consistent with previous predictions based on its structure, has the properties of a viroporin. Expression of a BEFV α1-maltose binding protein (MBP) fusion protein in Escherichia coli was observed to inhibit cell growth and increase membrane permeability to hygromycin B. Increased membrane permeability was also observed in BEFV-infected mammalian cells (but not cells infected with an α1-deficient BEFV strain) and in cells expressing a BEFV α1-green fluorescent protein (GFP) fusion protein, which was shown by confocal microscopy to localize to the Golgi complex. Furthermore, the predicted C-terminal cytoplasmic domain of α1, which contains a strong nuclear localization signal (NLS), was translocated to the nucleus when expressed independently, and in an affinity chromatography assay employing a GFP trap, the full-length α1 was observed to interact specifically with importin ß1 and importin 7 but not with importin α3. These data suggest that, in addition to its function as a viroporin, BEFV α1 may modulate components of nuclear trafficking pathways, but the specific role thereof remains unclear. Although rhabdovirus accessory genes occur commonly among arthropod-borne rhabdoviruses, little is known of their functions. Here, we demonstrate that the BEFV α1 ORF encodes a protein which has the structural and functional characteristics of a viroporin. We show that α1 localizes in the Golgi complex and increases cellular permeability. We also show that BEFV α1 binds importin ß1 and importin 7, suggesting that it may have a yet unknown role in modulating nuclear trafficking. This is the first functional analysis of an ephemerovirus accessory protein and of a rhabdovirus viroporin.


Subject(s)
Ephemeral Fever Virus, Bovine/metabolism , Ephemeral Fever/metabolism , Karyopherins/metabolism , Viral Proteins/metabolism , beta Karyopherins/metabolism , Amino Acid Motifs , Animals , Cattle , Cell Nucleus/genetics , Cell Nucleus/metabolism , Ephemeral Fever/genetics , Ephemeral Fever/virology , Ephemeral Fever Virus, Bovine/chemistry , Ephemeral Fever Virus, Bovine/genetics , Karyopherins/genetics , Nuclear Localization Signals , Protein Binding , Protein Transport , Viral Proteins/chemistry , Viral Proteins/genetics , beta Karyopherins/genetics
9.
J Virol ; 88(3): 1525-35, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24227855

ABSTRACT

Bovine ephemeral fever virus (BEFV) is an arthropod-borne rhabdovirus that causes a debilitating disease of cattle in Africa, Asia, and Australia; however, its global geodynamics are poorly understood. An evolutionary analysis of G gene (envelope glycoprotein) ectodomain sequences of 97 BEFV isolates collected from Australia during 1956 to 2012 revealed that all have a single common ancestor and are phylogenetically distinct from BEFV sampled in other geographical regions. The age of the Australian clade is estimated to be between 56 and 65 years, suggesting that BEFV has entered the continent on few occasions since it was first reported in 1936 and that the 1955-1956 epizootic was the source of all currently circulating viruses. Notably, the Australian clade has evolved as a single genetic lineage across the continent and at a high evolutionary rate of ∼10(-3) nucleotide substitutions/site/year. Screening of 66 isolates using monoclonal antibodies indicated that neutralizing antigenic sites G1, G2, and G4 have been relatively stable, although variations in site G3a/b defined four antigenic subtypes. A shift in an epitope at site G3a, which occurred in the mid-1970s, was strongly associated with a K218R substitution. Similarly, a shift at site G3b was associated primarily with substitutions at residues 215, 220, and 223, which map to the tip of the spike on the prefusion form of the G protein. Finally, we propose that positive selection on residue 215 was due to cross-reacting neutralizing antibody to Kimberley virus (KIMV). This is the first study of the evolution of BEFV in Australia, showing that the virus has entered the continent only once during the past 50 to 60 years, it is evolving at a relatively constant rate as a single genetic lineage, and although the virus is relatively stable antigenically, mutations have resulted in four antigenic subtypes. Furthermore, the study shows that the evolution of BEFV in Australia appears to be driven, at least in part, by cross-reactive antibodies to KIMV which has a similar distribution and ecology but has not been associated with disease. As BEFV and KIMV are each known to be present in Africa and Asia, this interaction may occur on a broader geographic scale.


Subject(s)
Ephemeral Fever Virus, Bovine/genetics , Ephemeral Fever Virus, Bovine/isolation & purification , Ephemeral Fever/virology , Evolution, Molecular , Animals , Antibodies, Viral/immunology , Antigenic Variation , Australia/epidemiology , Cattle , Ephemeral Fever/epidemiology , Ephemeral Fever/immunology , Ephemeral Fever Virus, Bovine/classification , Ephemeral Fever Virus, Bovine/immunology , Models, Molecular , Molecular Sequence Data , Phylogeny , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/immunology
10.
Proc Natl Acad Sci U S A ; 109(46): 18915-20, 2012 Nov 13.
Article in English | MEDLINE | ID: mdl-23027947

ABSTRACT

Although West Nile virus (WNV) and other arthropod-borne viruses are a major public health problem, the mechanisms of antiviral immunity in mosquitoes are poorly understood. Dicer-2, responsible for the RNAi-mediated response through the C-terminal RNase-III domain, also contains an N-terminal DExD/H-box helicase domain similar to mammalian RIG-I/MDA5 which, in Drosophila, was found to be required for activation of an antiviral gene, Vago. Here we show that the Culex orthologue of Vago (CxVago) is up-regulated in response to WNV infection in a Dicer-2-dependent manner. Further, our data show that CxVago is a secreted peptide that restricts WNV infection by activation of the Jak-STAT pathway. Thus, Vago appears to function as an IFN-like antiviral cytokine in mosquitoes.


Subject(s)
Culex/immunology , Cytokines/immunology , Immunity, Innate/physiology , Insect Proteins/immunology , Janus Kinases/immunology , STAT Transcription Factors/immunology , West Nile virus/immunology , Animals , Chlorocebus aethiops , Cricetinae , Culex/metabolism , Culex/virology , Cytokines/metabolism , DEAD-box RNA Helicases/immunology , DEAD-box RNA Helicases/metabolism , Drosophila melanogaster , Humans , Insect Proteins/metabolism , Janus Kinases/metabolism , RNA, Viral/immunology , RNA, Viral/metabolism , Ribonuclease III/immunology , Ribonuclease III/metabolism , STAT Transcription Factors/metabolism , Vero Cells , West Nile Fever/immunology , West Nile Fever/metabolism , West Nile Fever/transmission , West Nile virus/metabolism
11.
Virology ; 433(1): 236-44, 2012 Nov 10.
Article in English | MEDLINE | ID: mdl-22925335

ABSTRACT

Kimberley virus (KIMV) is an arthropod-borne rhabdovirus that was isolated in 1973 and on several subsequent occasions from healthy cattle, mosquitoes (Culex annulirostris) and biting midges (Culicoides brevitarsis) in Australia. Malakal virus (MALV) is an antigenically related rhabdovirus isolated in 1963 from mosquitoes (Mansonia uniformis) in Sudan. We report here the complete genome sequences of KIMV (15442 nt) and MALV (15444 nt). The genomes have a similar organisation (3'-l-N-P-M-G-G(NS)-α1-α2-ß-γ-L-t-5') to that of bovine ephemeral fever virus (BEFV). High levels of amino acid identity in each gene, similar gene expression profiles, clustering in phylogenetic analyses of the N, P, G and L proteins, and strong cross-neutralisation indicate that KIMV and MALV are geographic variants of the same ephemerovirus that, like BEFV, occurs in Africa, Asia and Australia.


Subject(s)
Ephemerovirus/genetics , Gene Expression , Genome, Viral , Africa , Amino Acid Sequence , Animals , Australia , Cattle , Cell Line , Cricetinae , Ephemerovirus/classification , Ephemerovirus/isolation & purification , Gene Expression Profiling , Molecular Sequence Data , Multigene Family , Phylogeny , Phylogeography , Sequence Alignment , Sequence Homology, Amino Acid
12.
J Gen Virol ; 92(Pt 5): 1152-1161, 2011 May.
Article in English | MEDLINE | ID: mdl-21289160

ABSTRACT

A universal influenza vaccine that does not require annual reformulation would have clear advantages over the currently approved seasonal vaccine. In this study, we combined the mucosal adjuvant alpha-galactosylceramide (αGalCer) and peptides designed across the highly conserved influenza precursor haemagglutinin (HA(0)) cleavage loop as a vaccine. Peptides designed across the HA(0) of influenza A/H3N2 viruses, delivered to mice via the intranasal route with αGalCer as an adjuvant, provided 100 % protection following H3N2 virus challenge. Similarly, intranasal inoculation of peptides across the HA(0) of influenza A/H5N1 with αGalCer completely protected mice against heterotypic challenge with H3N2 virus. Our data suggest that these peptide vaccines effectively inhibited subsequent influenza A/H3N2 virus replication. In contrast, only 20 % of mice vaccinated with αGalCer-adjuvanted peptides spanning the HA(0) of H5N1 survived homologous viral challenge, possibly because the HA(0) of this virus subtype is cleaved by intracellular furin-like enzymes. Results of these studies demonstrated that HA(0) peptides adjuvanted with αGalCer have the potential to form the basis of a synthetic, intranasal influenza vaccine.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Body Weight , Cross Protection , Female , Galactosylceramides/administration & dosage , Hemagglutinin Glycoproteins, Influenza Virus/administration & dosage , Histocytochemistry , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H5N1 Subtype/genetics , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/administration & dosage , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Microscopy , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/prevention & control , Protein Precursors/genetics , Protein Precursors/metabolism , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Viral Load
13.
PLoS One ; 4(4): e5336, 2009.
Article in English | MEDLINE | ID: mdl-19401775

ABSTRACT

BACKGROUND: Influenza A (flu) virus causes significant morbidity and mortality worldwide, and current vaccines require annual updating to protect against the rapidly arising antigenic variations due to antigenic shift and drift. In fact, current subunit or split flu vaccines rely exclusively on antibody responses for protection and do not induce cytotoxic T (Tc) cell responses, which are broadly cross-reactive between virus strains. We have previously reported that gamma-ray inactivated flu virus can induce cross-reactive Tc cell responses. METHODOLOGY/PRINCIPAL FINDING: Here, we report that intranasal administration of purified gamma-ray inactivated human influenza A virus preparations (gamma-Flu) effectively induces heterotypic and cross-protective immunity. A single intranasal administration of gamma-A/PR8[H1N1] protects mice against lethal H5N1 and other heterotypic infections. CONCLUSIONS/SIGNIFICANCE: Intranasal gamma-Flu represents a unique approach for a cross-protective vaccine against both seasonal as well as possible future pandemic influenza A virus infections.


Subject(s)
Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza Vaccines/administration & dosage , Influenza, Human/immunology , Influenza, Human/prevention & control , Administration, Intranasal , Animals , Cross Reactions , Female , Gamma Rays , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H5N1 Subtype/genetics , Influenza, Human/virology , Mice , Mice, Inbred BALB C , RNA, Viral/analysis , RNA, Viral/genetics , T-Lymphocytes, Cytotoxic/immunology , Vaccination/methods , Vaccines, Inactivated/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...