Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Med Phys ; 50(8): 4734-4743, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37415411

ABSTRACT

BACKGROUND: The production of individualized anthropomorphic phantoms via three-dimensional (3D) printing methods offers promising possibilities to assess and optimize radiation exposures for specifically relevant patient groups (i.e., overweighed or pregnant persons) that are not adequately represented by standardized anthropomorphic phantoms. However, the equivalence of printed phantoms must be demonstrated exemplarily with respect to the resulting image contrasts and dose distributions. PURPOSE: To reproduce a conventionally produced anthropomorphic phantom of a female chest and breasts and to evaluate their equivalence with respect to image contrasts and absorbed doses at the example of a computed tomography (CT) examination of the chest. METHODS: In a first step, the effect of different print settings on the CT values of printed samples was systematically investigated. Subsequently, a transversal slice and breast add-ons of a conventionally produced female body phantom were reproduced using a multi-material extrusion-based printer, considering six different types of tissues (muscle, lung, adipose, and glandular breast tissue, as well as bone and cartilage). CT images of the printed and conventionally produced phantom parts were evaluated with respect to their geometric correspondence, image contrasts, and absorbed doses measured using thermoluminescent dosimeters. RESULTS: CT values of printed objects are highly sensitive to the selected print settings. The soft tissues of the conventionally produced phantom could be reproduced with a good agreement. Minor differences in CT values were observed for bone and lung tissue, whereas absorbed doses to the relevant tissues were identical within the measurement uncertainties. CONCLUSION: 3D-printed phantoms are with exception of minor contrast differences equivalent to their conventionally manufactured counterparts. When comparing the two production techniques, it is important to note that conventionally manufactured phantoms should not be considered as absolute benchmarks, as they also only approximate the human body in terms of its absorption, and attenuation of x-rays as well as its geometry.


Subject(s)
Breast , Phantoms, Imaging , Printing, Three-Dimensional , Tomography, X-Ray Computed , Female , Humans , Tomography, X-Ray Computed/methods , Breast/diagnostic imaging
2.
Med Phys ; 50(12): 7594-7605, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37183490

ABSTRACT

BACKGROUND: Recent advances in computed tomography (CT) technology have considerably improved the quality of CT images and reduced radiation exposure in patients. At present, however, there is no generally accepted figure of merit (FOM) for comparing the dose efficiencies of CT systems. PURPOSE: (i) To establish an FOM that characterizes the quality of CT images in relation to the radiation dose by means of a mathematical model observer and (ii) to evaluate the new FOM on different CT systems and image reconstruction algorithms. METHODS: Images of a homogeneous phantom with four low-contrast inserts were acquired using three different CT systems at three dose levels and a representative protocol for CT imaging of low-contrast objects in the abdomen. The images were reconstructed using filtered-back projection and iterative algorithms. A channelized hotelling observer with difference-of-Gaussian channels was applied to compute the detectability ( d ' $d^{\prime}$ ). This was done for each insert and each of the considered imaging conditions from square regions of interest (ROIs) that were (semi-)automatically centered on the inserts. The estimated detectabilities ( d ' $d^{\prime}$ ) were averaged in the first step over the three dose levels ( ⟨ d ' ⟩ $\langle {d^{\prime}} \rangle $ ), and subsequently over the four contrast inserts ( ⟨ d ' ⟩ w ${\langle {d^{\prime}} \rangle _{\rm{w}}}$ ). All calculation steps included a dedicated assessment of the related uncertainties following accepted metrological guidelines. RESULTS: The determined detectabilities ( d ' $d^{\prime}$ ) varied considerably with the contrast and diameter of the four inserts, as well as with the radiation doses and reconstruction algorithms used for image generation ( d ' $d^{\prime}\;$ = 1.3-5.5). Thus, the specification of a single detectability as an FOM is not well suited for comprehensively characterizing the dose efficiency of a CT system. A more comprehensive and robust characterization was provided by the averaged detectabilities ⟨ d ' ⟩ $\langle {d^{\prime}} \rangle $ and, in particular, ⟨ d ' ⟩ w ${\langle {d^{\prime}} \rangle _{\rm{w}}}$ . Our analysis reveals that the model observer analysis is very sensitive to the exact position of the ROIs. CONCLUSIONS: The presented automatable software approach yielded with the weighted detectability ⟨ d ' ⟩ w ${\langle {d^{\prime}} \rangle _{\rm{w}}}$ an objective FOM to benchmark different CT systems and reconstruction algorithms in a robust and reliable manner. An essential advantage of the proposed model-observer approach is that uncertainties in the FOM can be provided, which is an indispensable prerequisite for type testing.


Subject(s)
Algorithms , Software , Humans , Radiation Dosage , Models, Theoretical , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Image Processing, Computer-Assisted/methods , Radiographic Image Interpretation, Computer-Assisted/methods
3.
Front Oncol ; 12: 903537, 2022.
Article in English | MEDLINE | ID: mdl-36158693

ABSTRACT

Out-of-field patient doses in proton therapy are dominated by neutrons. Currently, they are not taken into account by treatment planning systems. There is an increasing need to include out-of-field doses in the dose calculation, especially when treating children, pregnant patients, and patients with implants. In response to this demand, this work presents the first steps towards a tool for the prediction of out-of-field neutron doses in pencil beam scanning proton therapy facilities. As a first step, a general Monte Carlo radiation transport model for simulation of out-of-field neutron doses was set up and successfully verified by comparison of simulated and measured ambient neutron dose equivalent and neutron fluence energy spectra around a solid water phantom irradiated with a variation of different treatment plan parameters. Simulations with the verified model enabled a detailed study of the variation of the neutron ambient dose equivalent with field size, range, modulation width, use of a range shifter, and position inside the treatment room. For future work, it is planned to use this verified model to simulate out-of-field neutron doses inside the phantom and to verify the simulation results by comparison with previous in-phantom measurement campaigns. Eventually, these verified simulations will be used to build a library and a corresponding tool to allow assessment of out-of-field neutron doses at pencil beam scanning proton therapy facilities.

4.
Radiat Prot Dosimetry ; 198(19): 1471-1475, 2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36138419

ABSTRACT

The Maastro Proton Therapy Centre is the first European facility housing the Mevion S250i Hyperscan synchrocyclotron. The proximity of the accelerator to the patient, the presence of an active pencil beam delivery system downstream of a passive energy degrader and the pulsed structure of the beam make the Mevion stray neutron field unique amongst proton therapy facilities. This paper reviews the results of a rem-counter intercomparison experiment promoted by the European Radiation Dosimetry Group at Maastro and compares them with those at other proton therapy facilities. The Maastro neutron H*(10) in the room (100-200 µSv/Gy at about 2 m from the isocentre) is in line with accelerators using purely passive or wobbling beam delivery modalities, even though Maastro shows a dose gradient peaked near the accelerator. Unlike synchrotron- and cyclotron-based facilities, the pulsed beam at Maastro requires the employment of rem-counters specifically designed to withstand pulsed neutron fields.


Subject(s)
Proton Therapy , Humans , Proton Therapy/methods , Radiation Dosage , Neutrons , Radiometry/methods , Cyclotrons , Radiotherapy Dosage
5.
Med Phys ; 49(12): 7766-7778, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36121424

ABSTRACT

INTRODUCTION: Three-dimensional printing is a promising technology to produce phantoms for quality assurance and dosimetry in X-ray imaging. Crucial to this, however, is the use of tissue equivalent printing materials. It was thus the aim of this study to evaluate the properties of a larger number of commercially available printing filaments with respect to their attenuation and absorption of X-rays. MATERIALS AND METHODS: Apparent kerma attenuation coefficients (AKACs) and absorbed doses for different X-ray spectra (tube voltages, 70-140 kV) were measured and simulated by Monte-Carlo computations for a larger number of fused-deposition-modeling (FDM) materials. The results were compared with the respective values simulated for reference body tissues. In addition, the properties of polylactide acid samples printed with reduced infill densities were investigated. RESULTS: Measured and simulated AKACs and absorbed doses agreed well with each other and in case of AKACs also with attenuation coefficients derived from the reference database of the National Institute of Standards and Technology (NIST). For lung, adipose, muscle, and bulk soft tissue as well as for spongiosa (cancellous bone), printed materials with equivalent attenuation as well as absorption properties could be identified. In contrast, none of the considered printed materials was equivalent to cortical bone. CONCLUSION: Several FDM materials have been identified as well-suited substitutes for body tissues in terms of the investigated material characteristics. They can therefore be used for in-house production of individualized and task-specific phantoms for image quality assessment and dose measurements in X-ray imaging.


Subject(s)
Printing, Three-Dimensional , Radiometry , X-Rays , Radiography , Phantoms, Imaging
6.
Phys Med Biol ; 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35259730

ABSTRACT

Objective Proton therapy is gaining popularity because of the improved dose delivery over conventional radiation therapy. The secondary dose to healthy tissues is dominated by secondary neutrons. Commercial rem-counters are valuable instruments for the on-line assessment of neutron ambient dose equivalent (H*(10)). In general, however, a priori knowledge of the type of facility and of the radiation field is required for the proper choice of any survey meter. The novel Mevion S250i Hyperscan synchrocyclotron mounts the accelerator directly on the gantry. It provides a scanned 227 MeV proton beam, delivered in pulses with a pulse width of 10 µs at 750 Hz frequency, which is afterwards degraded in energy by a range shifter modulator system. This environment is particularly challenging for commercial rem-counters; therefore, we tested the reliability of some of the most widespread rem-counters to understand their limits in the Mevion S250i stray neutron field. Approach This work, promoted by the European Radiation Dosimetry Group (EURADOS), describes a rem-counter intercomparison at the Maastro Proton Therapy centre in the Netherlands, which houses the novel Mevion S250i Hyperscan system. Several rem-counters were employed in the intercomparison (LUPIN, LINUS, WENDI-II, LB6411, NM2B-458, NM2B-495Pb), which included simulation of a patient treatment protocol employing a water tank phantom. The outcomes of the experiment were compared with models and data from the literature. Main results We found that only the LUPIN allowed for a correct assessment of H*(10) within a 20% uncertainty. All other rem-counters underestimated the reference H*(10) by factors from 2 to more than 10, depending on the detector model and on the neutron dose per pulse. In pulsed fields, the neutron dose per pulse is a fundamental parameter, while the average neutron dose rate is a secondary quantity. An average 150-200 µSv/GyRBE neutron H*(10) at various positions around the phantom and at distances between 186 cm and 300 cm from it was measured per unit therapeutic dose delivered to the target. Significance Our results are partially in line with results obtained at similar Mevion facilities employing passive energy modulation. Comparisons with facilities employing active energy modulation confirmed that the neutron H*(10) can increase up to more than a factor of 10 when passive energy modulation is employed. The challenging environment of the Mevion stray neutron field requires the use of specific rem-counters sensitive to high-energy neutrons (up to a few hundred MeV) and specifically designed to withstand pulsed neutron fields.

7.
Rofo ; 194(4): 400-408, 2022 Apr.
Article in English, German | MEDLINE | ID: mdl-34933352

ABSTRACT

PURPOSE: According to the German legislation and regulation of radiation protection, i. e. Strahlenschutzgesetz und Strahlenschutzverordnung (StrlSchG and StrlSchV), which came into force on 31st December 2018, significant unintended or accidential exposures have to be reported to the competent authority. Furthermore, facilities have to implement measures to prevent and to recognize unintended or accidental exposures as well as to reduce their consequences. We developed a process to register incidents and tested its application in the framework of a multi-center-study. MATERIALS AND METHODS: Over a period of 12 months, 16 institutions for x-ray diagnostics and interventions, documented their incidents. Documentation of the incidents was conducted using the software CIRSrad, which was developed, released for testing purposes and implemented in the frame of the study. Reporting criteria of the project were selected to be more sensitive compared to the legal criteria specifying "significant incidents". Reported incidents were evaluated after four, eight, and twelve months. Finally, all participating institutions were interviewed on their experience with the software and the correlated effort. RESULTS: The rate of reported incidents varied between institutions as well as between modalities. The majority of incidents were reported in conventional x-ray imaging, followed by computed tomography and therapeutic interventions. Incidents were attributed to several different causes, amongst others to the technical setup and patient positioning (19 %) and patient movement or insufficient cooperativeness of the patient (18 %). Most incidents were below corresponding thresholds stated in StrlSchV. The workload for documenting the incidents was rated as appropriate. CONCLUSION: It is possible to monitor and handle incidents complient with legal requirements with an acceptable effort. The number of reported incidents can be increased by frequent trainings on the detection and the processing workflow, on the software and legal regulation as well as by a transparent error handling within the institution. KEY POINTS: · The software CIRSrad was developed to enable the present study and as prototype platform for a future radiological incident management system.. · 586 exceedances of thresholds were recorded by 16 facilities in a period of one year.. · Frequent trainings of all users increase the number of reported cases.. CITATION FORMAT: · Müller BS, Singer J, Stamm G et al. Handling of Incidents in the Clinical Application of Ionizing Radiation in Diagnostic and Interventional Radiology - a Multi-center Study. Fortschr Röntgenstr 2022; 194: 400 - 408.


Subject(s)
Radiation Protection , Radiology, Interventional , Humans , Radiation, Ionizing , Radiography , Tomography, X-Ray Computed
8.
Med Phys ; 48(12): 8140-8151, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34655237

ABSTRACT

PURPOSE: X-ray cabinets are replacing 137 Cs/60 Co sources in radiation biology research due to advantages in size, handling, and radiation protection. However, because of their different physical properties, X-ray cabinets are more susceptible to experimental influences than conventional sources. The aim of this study was to examine the variations related to the experimental setups typically used to investigate biological radiation effects with X-ray cabinets. MATERIALS AND METHODS: A combined approach of physical dose measurements by thermoluminescence dosimetry and detection of biological effects by quantification of γH2AX and 53BP1 foci was used to analyze field inhomogeneity and evaluate the influence of the components of the experimental setup. RESULTS: Irradiation was performed using an X-ray tube (195 kV, 10 mA, 0.5-mm-thick copper filter, dose rate of 0.59 Gy/min). Thermoluminescence dosimetry revealed inhomogeneity and a dose decrease of up to 42.3% within the beam area (diameter 31.1 cm) compared to the dose at the center. This dose decrease was consistent with the observed decline in the number of radiation-induced foci by up to 55.9 %. Uniform dose distribution was measured after reducing the size of the radiation field (diameter 12.5 cm). However, when using 15-ml test tubes placed at different positions within this field, the dose decreased by up to 17% in comparison to the central position. Analysis of foci number revealed significant differences between the tubes for γH2AX (1 h) and 53BP1 (4 h) at different time points after irradiation. Neither removal of some tubes nor of the caps improved the dose decrease significantly. By contrast, when using 1.5-ml tubes, dose differences were less than 4%, and no significant differences in foci number were detected. CONCLUSION: X-ray cabinets are user-friendly irradiation units for investigating biological radiation effects. However, field inhomogeneities and experimental setup components considerably affect the delivered irradiation doses. For this reason, strict dosimetric monitoring of experimental irradiation setups is mandatory for reliable studies.


Subject(s)
Radiation Protection , Radiometry , Radiobiology , Radiography , X-Rays
9.
Z Med Phys ; 31(2): 215-228, 2021 May.
Article in English | MEDLINE | ID: mdl-33622567

ABSTRACT

PURPOSE: To simulate secondary neutron radiation fields that had been measured at different relative positions during phantom irradiation inside a scanning proton therapy gantry treatment room. Further, to identify origin, energy distribution, and angular emission of the secondary neutrons as a function of proton beam energy. METHODS: The FLUKA Monte Carlo code was used to model the relevant parts of the treatment room in a scanned pencil beam proton therapy gantry including shielding walls, floor, major metallic gantry-components, patient table, and a homogeneous PMMA target. The proton beams were modeled based on experimental beam ranges in water and spot shapes in air. Neutron energy spectra were simulated at 0°, 45°, 90° and 135° relative to the beam axis at 2m distance from isocenter for monoenergetic 11×11cm2 fields from 200MeV, 140MeV, 75MeV initial proton beams, as well as for 118MeV protons with a 5cm thick PMMA range shifter. The total neutron spectra were scored for these four positions and proton energies. FLUKA neutron spectra simulations were crosschecked with Geant4 simulations using initial proton beam properties from FLUKA-generated phase spaces. Additionally, the room-components generating secondary neutrons in the room and their contributions to the total spectrum were identified and quantified. RESULTS: FLUKA and Geant4 simulated neutron spectra showed good general agreement with published measurements in the whole simulated neutron energy range of 10-10 to 103MeV. As in previous studies, high-energy (E≥19.6MeV) neutrons from the phantom are most prevalent along 0°, while thermalized (1meV≤E<0.4eV) and fast (100keV≤E<19.4MeV) neutrons dominate the spectra in the lateral and backscatter direction. The iron of the large bending magnet and its counterweight mounted on the gantry were identified as the most determinant sources of secondary fast-neutrons, which have been lacking in simplified room simulations. CONCLUSIONS: The results helped disentangle the origin of secondary neutrons and their dominant contributions and were strengthened by the fact that a cross comparison was made using two independent Monte Carlo codes. The complexity of such room model can in future be limited using the result. They may further be generalized in that they can be used for an assessment of neutron fields, possibly even at facilities where detailed neutron measurements and simulations cannot be performed. They may also help to design future proton therapy facilities and to reduce unwanted radiation doses from secondary neutrons to patients.


Subject(s)
Proton Therapy , Humans , Monte Carlo Method , Neutrons , Phantoms, Imaging , Radiometry , Radiotherapy Dosage
10.
Med Phys ; 44(5): 1912-1920, 2017 May.
Article in English | MEDLINE | ID: mdl-28294362

ABSTRACT

BACKGROUND AND PURPOSE: Systematic investigation of the energy and angular dependence of secondary neutron fluence energy distributions and ambient dose equivalents values (H*(10)) inside a pencil beam scanning proton therapy treatment room using a gantry. MATERIALS AND METHODS: Neutron fluence energy distributions were measured with an extended-range Bonner sphere spectrometer featuring ³He proportional counters, at four positions at 0°, 45°, 90°, and 135° with respect to beam direction and at a distance of 2 m from the isocenter. The energy distribution of secondary neutrons was investigated for initial proton beam energies of 75 MeV, 140 MeV, and 200 MeV, respectively, using a 2D scanned irradiation field of 11 × 11 cm² delivered to a 30 × 30 × 30 cm³ PMMA phantom. Additional measurements were performed at a proton energy of 118 MeV including a 5 cm range-shifter (PMMA), yielding a Bragg peak position similar to that of 75 MeV protons. RESULTS: Ambient dose equivalent values from 0.3 µSv/Gy (75 MeV; 90°) to 24 µSv/Gy (200 MeV; 0°) were measured inside the treatment room at a distance of 2 m from the isocenter. H*(10) values were lower (by factors of up to 7.2 (at 45°)) at 75 MeV compared to those at 118 MeV with the 5 cm range-shifter. At 0° and 45°, an evaporation peak was found in the measured neutron fluence energy distributions, at neutron energies around MeV, which contributes about 50% to total H*(10) values, for all investigated proton beam energies. CONCLUSIONS: This study showed a pronounced increase of secondary neutron H*(10) values inside the proton treatment room with increasing proton energy without beam modifiers. For example, in beam direction this increase was about a factor of 50 when protons of 75 MeV and 200 MeV were compared. The existence of a peak of secondary neutrons in the MeV region was demonstrated in beam direction (0°). This peak is due to evaporation neutrons produced in the existing surrounding materials such as those used for the gantry. Therefore, any simulation of the secondary neutrons within a proton treatment room must take these materials into account. In addition, the results obtained here show that the use of a range-shifter increases the production of secondary neutrons inside the treatment room. Using a range-shifter, the higher neutron doses observed mainly result from the higher incident proton energy (118 MeV instead of 75 MeV when no range-shifter was used), due to higher neutron production cross-sections.


Subject(s)
Neutrons , Proton Therapy , Radiometry , Humans , Phantoms, Imaging , Protons , Spectrum Analysis
11.
Phys Med Biol ; 61(11): 4127-40, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27171358

ABSTRACT

The purpose of this study is to characterize the stray neutron radiation field in scanning proton therapy considering a pediatric anthropomorphic phantom and a clinically-relevant beam condition. Using two extended-range Bonner sphere spectrometry systems (ERBSS), Working Group 9 of the European Radiation Dosimetry Group measured neutron spectra at ten different positions around a pediatric anthropomorphic phantom irradiated for a brain tumor with a scanning proton beam. This study compares the different systems and unfolding codes as well as neutron spectra measured in similar conditions around a water tank phantom. The ten spectra measured with two ERBSS systems show a generally similar thermal component regardless of the position around the phantom while high energy neutrons (above 20 MeV) were only registered at positions near the beam axis (at 0°, 329° and 355°). Neutron spectra, fluence and ambient dose equivalent, H (*)(10), values of both systems were in good agreement (<15%) while the unfolding code proved to have a limited effect. The highest H (*)(10) value of 2.7 µSv Gy(-1) was measured at 329° to the beam axis and 1.63 m from the isocenter where high-energy neutrons (E ⩾ 20 MeV) contribute with about 53%. The neutron mapping within the gantry room showed that H (*)(10) values significantly decreased with distance and angular position with respect to the beam axis dropping to 0.52 µSv Gy(-1) at 90° and 3.35 m. Spectra at angles of 45° and 135° with respect to the beam axis measured here with an anthropomorphic phantom showed a similar peak structure at the thermal, fast and high energy range as in the previous water-tank experiments. Meanwhile, at 90°, small differences at the high-energy range were observed. Using ERBSS systems, neutron spectra mapping was performed to characterize the exposure of scanning proton therapy patients. The ten measured spectra provide precise information about the exposure of healthy organs to thermal, epithermal, evaporation and intra-nuclear cascade neutrons. This comprehensive spectrometry analysis can also help in understanding the tremendous literature data based rem-counters while also being of great value for general neutron shielding and radiation safety studies.


Subject(s)
Neutrons/therapeutic use , Proton Therapy/methods , Radiation Dosage , Humans , Phantoms, Imaging , Radiometry/methods , Radiotherapy Dosage , Spectrum Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...