Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891874

ABSTRACT

Formin Homology Proteins (Formins) are a highly conserved family of cytoskeletal regulatory proteins that participate in a diverse range of cellular processes. FMNL2 is a member of the Diaphanous-Related Formin sub-group, and previous reports suggest FMNL2's role in filopodia assembly, force generation at lamellipodia, subcellular trafficking, cell-cell junction assembly, and focal adhesion formation. How FMNL2 is recruited to these sites of action is not well understood. To shed light on how FMNL2 activity is partitioned between subcellular locations, we used biotin proximity labeling and proteomic analysis to identify an FMNL2 interactome. The interactome identified known and new FMNL2 interacting proteins with functions related to previously described FMNL2 activities. In addition, our interactome predicts a novel connection between FMNL2 and extracellular vesicle assembly. We show directly that FMNL2 protein is present in exosomes.


Subject(s)
Formins , Formins/metabolism , Humans , Proteomics/methods , Exosomes/metabolism , Mass Spectrometry/methods , Protein Binding , HEK293 Cells , Protein Interaction Maps
2.
Genes (Basel) ; 14(5)2023 05 05.
Article in English | MEDLINE | ID: mdl-37239403

ABSTRACT

Mitochondrial diseases are a group of heterogeneous disorders caused by dysfunctional mitochondria. Interestingly, a large proportion of mitochondrial diseases are caused by defects in genes associated with tRNA metabolism. We recently discovered that partial loss-of-function mutations in tRNA Nucleotidyl Transferase 1 (TRNT1), the nuclear gene encoding the CCA-adding enzyme essential for modifying both nuclear and mitochondrial tRNAs, causes a multisystemic and clinically heterogenous disease termed SIFD (sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay; SIFD). However, it is not clear how mutations in a general and essential protein like TRNT1 cause disease with such clinically broad but unique symptomatology and tissue involvement. Using biochemical, cell, and mass spectrometry approaches, we demonstrate that TRNT1 deficiency is associated with sensitivity to oxidative stress, which is due to exacerbated, angiogenin-dependent cleavage of tRNAs. Furthermore, reduced levels of TRNT1 lead to phosphorylation of Eukaryotic Translation Initiation Factor 2 Subunit Alpha (eIF2α), increased reactive oxygen species (ROS) production, and changes in the abundance of distinct proteins. Our data suggest that the observed variable SIFD phenotypes are likely due to dysregulation of tRNA maturation and abundance, which in turn negatively affects the translation of distinct proteins.


Subject(s)
Mitochondrial Diseases , Nucleotidyltransferases , Humans , Nucleotidyltransferases/genetics , Mitochondria/genetics , Mutation , Mitochondrial Diseases/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism
3.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36835656

ABSTRACT

The non-histone chromatin binding protein High Mobility Group AT-hook protein 2 (HMGA2) has important functions in chromatin remodeling, and genome maintenance and protection. Expression of HMGA2 is highest in embryonic stem cells, declines during cell differentiation and cell aging, but it is re-expressed in some cancers, where high HMGA2 expression frequently coincides with a poor prognosis. The nuclear functions of HMGA2 cannot be explained by binding to chromatin alone but involve complex interactions with other proteins that are incompletely understood. The present study used biotin proximity labeling, followed by proteomic analysis, to identify the nuclear interaction partners of HMGA2. We tested two different biotin ligase HMGA2 constructs (BioID2 and miniTurbo) with similar results, and identified known and new HMGA2 interaction partners, with functionalities mainly in chromatin biology. These HMGA2 biotin ligase fusion constructs offer exciting new possibilities for interactome discovery research, enabling the monitoring of nuclear HMGA2 interactomes during drug treatments.


Subject(s)
Biotin , HMGA2 Protein , Proteomics , Cell Differentiation , Chromatin , Ligases
4.
J Biol Chem ; 299(2): 102893, 2023 02.
Article in English | MEDLINE | ID: mdl-36634848

ABSTRACT

The subcellular localization, activity , and substrate specificity of the serine/threonine protein phosphatase 1 catalytic subunit (PP1cat) is mediated through its dynamic association with regulatory subunits in holoenzyme complexes. While some functional overlap is observed for the three human PP1cat isoforms, they also show distinct targeting based on relative preferences for specific regulatory subunits. A well-known example is the preferential association of MYPT1 with PP1ß in the myosin phosphatase complex. In smooth muscle, MYPT1/PP1ß counteracts the muscle contraction induced by phosphorylation of the light chains of myosin by the myosin light chain kinase. This phosphatase complex is also found in nonmuscle cells, where it is targeted to both myosin and nonmyosin substrates and contributes to regulation of the balance of cytoskeletal structure and motility during cell migration and division. Although it remains unclear how MYPT1/PP1ß traffics between microtubule- and actin-associated substrates, our identification of the microtubule- and actin-binding protein SPECC1L in both the PP1ß and MYPT1 interactomes suggests that it is the missing link. Our validation of their association using coimmunoprecipitation and proximity biotinylation assays, together with the strong overlap that we observed for the SPECC1L and MYPT1 interactomes, confirmed that they exist in a stable complex in the cell. We further showed that SPECC1L binds MYPT1 directly and that it can impact the balance of the distribution of the MYPT1/PP1ß complex between the microtubule and filamentous actin networks.


Subject(s)
Microtubules , Myosin-Light-Chain Phosphatase , Protein Phosphatase 1 , Humans , Actins/metabolism , Microtubules/metabolism , Myosin-Light-Chain Phosphatase/metabolism , Phosphorylation , Protein Phosphatase 1/metabolism , Protein Binding
5.
Cell Rep ; 41(9): 111726, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36450254

ABSTRACT

The serine/threonine protein phosphatase 1 (PP1) dephosphorylates hundreds of substrates by associating with >200 regulatory proteins to form specific holoenzymes. The major PP1 targeting protein in the nucleolus is RRP1B (ribosomal RNA processing 1B). In addition to selectively recruiting PP1ß/PP1γ to the nucleolus, RRP1B also has a key role in ribosome biogenesis, among other functions. How RRP1B binds PP1 and regulates nucleolar phosphorylation signaling is not yet known. Here, we show that RRP1B recruits PP1 via established (RVxF/SILK/ΦΦ) and non-canonical motifs. These atypical interaction sites, the PP1ß/γ specificity, and N-terminal AF-binding pockets rely on hydrophobic interactions that contribute to binding and, via phosphorylation, regulate complex formation. This work advances our understanding of PP1 isoform selectivity, reveals key roles of N-terminal PP1 residues in regulator binding, and suggests that additional PP1 interaction sites have yet to be identified, all of which are necessary for a systems biology understanding of PP1 function.


Subject(s)
Cell Nucleolus , RNA Processing, Post-Transcriptional , Protein Phosphatase 1 , Holoenzymes , Phosphorylation
6.
J Biol Chem ; 298(11): 102512, 2022 11.
Article in English | MEDLINE | ID: mdl-36259517

ABSTRACT

Filopodia are long finger-like actin-based structures that project out from the plasma membrane as cells navigate and explore their extracellular environment. The initiation of filopodia formation requires release of tension at the plasma membrane followed by the coordinated assembly of long unbranched actin filaments. Filopodia growth is maintained by a tip complex that promotes actin polymerization and protects the growing barbed ends of the actin fibers from capping proteins. Filopodia growth also depends on additional F-actin bundling proteins to stiffen the actin filaments as well as extension of the membrane sheath projecting from the cell periphery. These activities can be provided by a number of actin-binding and membrane-binding proteins including formins such as formin-like 2 (FMNL2) and FMNL3, and Inverse-Bin-Amphiphysin-Rvs (I-BAR) proteins such as IRTKS and IRSp53, but the specific requirement for these proteins in filopodia assembly is not clear. We report here that IRTKS and IRSp53 are FMNL2-binding proteins. Coexpression of FMNL2 with either I-BAR protein promotes cooperative filopodia assembly. We find IRTKS, but not IRSp53, is required for FMNL2-induced filopodia assembly, and FMNL2 and IRTKS are mutually dependent cofactors in this process. Our results suggest that the primary function for FMNL2 during filopodia assembly is binding to the plasma membrane and that regulation of actin dynamics by its formin homology 2 domain is secondary. From these results, we conclude that FMNL2 initiates filopodia assembly via an unexpected novel mechanism, by bending the plasma membrane to recruit IRTKS and thereby nucleate filopodia assembly.


Subject(s)
Actins , Pseudopodia , Pseudopodia/metabolism , Formins , Actins/metabolism , Actin Cytoskeleton/metabolism , Carrier Proteins/metabolism
7.
Trends Biochem Sci ; 46(12): 950-952, 2021 12.
Article in English | MEDLINE | ID: mdl-34598839

ABSTRACT

In a recent study, Go, Knight et al. combined a panel of protein markers with BioID proximity-dependent labeling to profile the composition of 20 distinct subcellular compartments. Comparison with similar global datasets acquired using imaging or fractionation-based approaches confirmed the consistency of the results while highlighting unique advantages.


Subject(s)
Protein Interaction Mapping , Proteins , Biotinylation , Organelles/metabolism , Protein Interaction Mapping/methods , Proteins/metabolism
8.
STAR Protoc ; 2(3): 100630, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34223201

ABSTRACT

Expansion microscopy is a sample preparation technique in which fixed and immunostained cells or tissues are embedded in a cross-linked network of swellable polyelectrolyte hydrogel that expands isotropically upon addition of deionized water. We utilize the X10 method for tenfold expansion of U2OS cells with concurrent DNA staining. A custom 3D-printed gel cutter and chambered slides minimize gel drift, facilitating analysis of the components of nuclear structures at nanoscale resolution by conventional microscopy or Airyscan confocal imaging. For complete information on the generation and use of this protocol, please refer to Do et al. (2020).


Subject(s)
Cell Nucleus/ultrastructure , Microscopy/methods , Cell Line , Reproducibility of Results , Software
9.
Cell Rep ; 33(9): 108469, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33264625

ABSTRACT

Transcription-replication (T-R) conflicts cause replication stress and loss of genome integrity. However, the transcription-related processes that restrain such conflicts are poorly understood. Here, we demonstrate that the RNA polymerase II (RNAPII) C-terminal domain (CTD) phosphatase protein phosphatase 1 (PP1) nuclear targeting subunit (PNUTS)-PP1 inhibits replication stress. Depletion of PNUTS causes lower EdU uptake, S phase accumulation, and slower replication fork rates. In addition, the PNUTS binding partner WDR82 also promotes RNAPII-CTD dephosphorylation and suppresses replication stress. RNAPII has a longer residence time on chromatin after depletion of PNUTS or WDR82. Furthermore, the RNAPII residence time is greatly enhanced by proteasome inhibition in control cells but less so in PNUTS- or WDR82-depleted cells, indicating that PNUTS and WDR82 promote degradation of RNAPII on chromatin. Notably, reduced replication is dependent on transcription and the phospho-CTD binding protein CDC73 after depletion of PNUTS/WDR82. Altogether, our results suggest that RNAPII-CTD dephosphorylation is required for the continuous turnover of RNAPII on chromatin, thereby preventing T-R conflicts.


Subject(s)
Chromatin/drug effects , Chromosomal Proteins, Non-Histone/therapeutic use , RNA Polymerase II/metabolism , Chromosomal Proteins, Non-Histone/pharmacology , Humans , Transfection
10.
iScience ; 23(11): 101664, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33134894

ABSTRACT

Stress adaptation is exploited by cancer cells to survive and proliferate under adverse conditions. Survival pathways induced by stress are thus highly promising therapeutic targets. One key pathway involves formation of cytoplasmic stress granules, which regulate the location, stability, and translation of specific mRNAs. Here, we describe a transcriptional stress response that is triggered by similar stressors and characterized by accumulation of RepoMan (cell division cycle associated 2) at nuclear stress foci (nucSF). Formation of these structures is reversible, and they are distinct from known nuclear organelles and stress bodies. Immunofluorescence analysis revealed accumulation of heterochromatic markers, and increased association of RepoMan with the adenylate cyclase 2 (ADCY2) gene locus in stressed cells accompanied reduced levels of ADCY2 mRNA and protein. Quantitative comparison of the RepoMan interactome in stressed vs. unstressed cells identified condensin II as a nucSF factor, suggesting their functional association in the establishment and/or maintenance of these facultative heterochromatic domains.

11.
Methods ; 175: 44-52, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31794835

ABSTRACT

The protein arginine methyltransferase family (PRMT) is known as being the catalytic driving force for arginine methylation. This specific type of post translational modification is extensively used in biological processes, and therefore is highly relevant in the pathology of a profusion of diseases. Since altered PRMT expression or deregulation has been shown to contribute to a vast range of those diseases including cancer, their study is of great interest. Although an increasing number of substrates are being discovered for each PRMT, large scale proteomic methods can be used to identify novel interactors/substrates, further elucidating the role that PRMTs perform in physiological or disease states. Here, we describe the use of affinity purification (AP) coupled with stable isotope labeling with amino acids in cell culture (SILAC) quantitative mass spectrometry (MS) to identify protein interactors and substrates of PRMTs. We also explore the possibility of exploiting the fact most PRMTs display lower dissociation rates with their hypomethylated substrates as a strategy to increase the proportion of substrates identified in AP/MS studies.


Subject(s)
Chromatography, Affinity/methods , Enzyme Inhibitors/chemistry , Mass Spectrometry/methods , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/chemistry , Proteomics/methods , Amino Acids/metabolism , Arginine/analysis , Arginine/chemistry , Arginine/metabolism , Gene Expression , Histones/chemistry , Histones/metabolism , Humans , Isotope Labeling , MCF-7 Cells , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding/drug effects , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Recombinant Proteins
12.
F1000Res ; 82019.
Article in English | MEDLINE | ID: mdl-30774936

ABSTRACT

Proximity-based labeling has emerged as a powerful complementary approach to classic affinity purification of multiprotein complexes in the mapping of protein-protein interactions. Ongoing optimization of enzyme tags and delivery methods has improved both temporal and spatial resolution, and the technique has been successfully employed in numerous small-scale (single complex mapping) and large-scale (network mapping) initiatives. When paired with quantitative proteomic approaches, the ability of these assays to provide snapshots of stable and transient interactions over time greatly facilitates the mapping of dynamic interactomes. Furthermore, recent innovations have extended biotin-based proximity labeling techniques such as BioID and APEX beyond classic protein-centric assays (tag a protein to label neighboring proteins) to include RNA-centric (tag an RNA species to label RNA-binding proteins) and DNA-centric (tag a gene locus to label associated protein complexes) assays.


Subject(s)
Multiprotein Complexes/chemistry , Protein Interaction Mapping , Proteomics
13.
Mol Biol Cell ; 30(6): 778-793, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30699057

ABSTRACT

Protein arginine methyltransferases (PRMTs) are a family of enzymes that modify proteins by methylating the guanidino nitrogen atoms of arginine residues to regulate cellular processes such as chromatin remodeling, pre-mRNA splicing, and signal transduction. PRMT7 is the single type III PRMT solely capable of arginine monomethylation. To date, other than histone proteins, there are very few identified substrates of PRMT7. We therefore performed quantitative mass spectrometry experiments to identify PRMT7's interactome and potential substrates to better characterize the enzyme's biological function(s) in cells. These experiments revealed that PRMT7 interacts with and can methylate eukaryotic translation initiation factor 2 alpha (eIF2α), in vitro and in breast cancer cells. Furthermore, we uncovered a potential regulatory interplay between eIF2α arginine methylation by PRMT7 and stress-induced phosphorylation status of eIF2α at serine 51. Finally, we demonstrated that PRMT7 is required for eIF2α-dependent stress granule formation in the face of various cellular stresses. Altogether, our findings implicate PRMT7 as a novel mediator of eIF2α-dependent cellular stress response pathways.


Subject(s)
Eukaryotic Initiation Factor-2/metabolism , Protein-Arginine N-Methyltransferases/physiology , Amino Acid Sequence , Arginine/metabolism , Cell Line , Cytosol/physiology , DNA Methylation , Eukaryotic Initiation Factor-2/physiology , Eukaryotic Initiation Factors/metabolism , HEK293 Cells , Histones/metabolism , Humans , MCF-7 Cells , Methylation , Phosphorylation , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases/metabolism , Stress, Physiological/physiology
14.
Nucleic Acids Res ; 47(4): 1797-1813, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30541148

ABSTRACT

Ataxia telangiectasia mutated and Rad3-related (ATR) kinase is a key factor activated by DNA damage and replication stress. An alternative pathway for ATR activation has been proposed to occur via stalled RNA polymerase II (RNAPII). However, how RNAPII might signal to activate ATR remains unknown. Here, we show that ATR signaling is increased after depletion of the RNAPII phosphatase PNUTS-PP1, which dephosphorylates RNAPII in its carboxy-terminal domain (CTD). High ATR signaling was observed in the absence and presence of ionizing radiation, replication stress and even in G1, but did not correlate with DNA damage or RPA chromatin loading. R-loops were enhanced, but overexpression of EGFP-RNaseH1 only slightly reduced ATR signaling after PNUTS depletion. However, CDC73, which interacted with RNAPII in a phospho-CTD dependent manner, was required for the high ATR signaling, R-loop formation and for activation of the endogenous G2 checkpoint after depletion of PNUTS. In addition, ATR, RNAPII and CDC73 co-immunoprecipitated. Our results suggest a novel pathway involving RNAPII, CDC73 and PNUTS-PP1 in ATR signaling and give new insight into the diverse functions of ATR.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , RNA Polymerase II/genetics , Stress, Physiological/genetics , Tumor Suppressor Proteins/genetics , Animals , Chromatin/genetics , DNA Damage/radiation effects , DNA-Binding Proteins/genetics , Gene Expression Regulation/radiation effects , Green Fluorescent Proteins/genetics , Humans , Mice , Nuclear Proteins/genetics , Phosphorylation/radiation effects , RNA-Binding Proteins/genetics , Radiation, Ionizing , Receptors, Neuropeptide Y/genetics , Ribonuclease H/genetics , Signal Transduction/radiation effects , Stress, Physiological/radiation effects
15.
Proc Natl Acad Sci U S A ; 115(22): E5164-E5173, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29760073

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) has been implicated in both familial and sporadic Parkinson's disease (PD), yet its pathogenic role remains unclear. A previous screen in Drosophila identified Scar/WAVE (Wiskott-Aldrich syndrome protein-family verproline) proteins as potential genetic interactors of LRRK2 Here, we provide evidence that LRRK2 modulates the phagocytic response of myeloid cells via specific modulation of the actin-cytoskeletal regulator, WAVE2. We demonstrate that macrophages and microglia from LRRK2-G2019S PD patients and mice display a WAVE2-mediated increase in phagocytic response, respectively. Lrrk2 loss results in the opposite effect. LRRK2 binds and phosphorylates Wave2 at Thr470, stabilizing and preventing its proteasomal degradation. Finally, we show that Wave2 also mediates Lrrk2-G2019S-induced dopaminergic neuronal death in both macrophage-midbrain cocultures and in vivo. Taken together, a LRRK2-WAVE2 pathway, which modulates the phagocytic response in mice and human leukocytes, may define an important role for altered immune function in PD.


Subject(s)
Cytophagocytosis/physiology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Myeloid Cells/cytology , Parkinson Disease/physiopathology , Wiskott-Aldrich Syndrome Protein Family/metabolism , Animals , Cell Line , Drosophila , Humans , Mice , Microglia , Myeloid Cells/physiology , Signal Transduction/physiology
16.
Mol Biol Cell ; 29(13): 1611-1627, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29742020

ABSTRACT

A primary cilium is found on most mammalian cells, where it acts as a cellular antenna for the reception of both mechanical and chemical signals. A variety of diseases are associated with defective ciliogenesis, reflecting the ubiquity of the function of cilia and the number of proteins required for their assembly. Proper cilia length is necessary for cilia signaling and is regulated through a poorly understood balance of assembly and disassembly rates. FHDC1 is a unique member of the formin family of cytoskeletal regulatory proteins. Overexpression of FHDC1 induces F-actin accumulation and microtubule stabilization and acetylation. We find that overexpression of FHDC1 also has profound effects on ciliogenesis; in most cells FHDC1 overexpression blocks cilia assembly, but the cilia that are present are immensely elongated. FHDC1-induced cilia growth requires the FHDC1 FH2 and microtubule-binding domain and results from F-actin-dependent inhibition of cilia disassembly. FHDC1 depletion, or treatment with a pan-formin inhibitor, inhibits cilia assembly and induces cilia resorption. Endogenous FHDC1 protein localizes to cytoplasmic microtubules converging on the base of the cilia, and we identify the subdistal appendage protein Cep170 as an FHDC1 interacting protein. Our results suggest that FHDC1 plays a role in coordinating cytoskeletal dynamics during normal cilia assembly.


Subject(s)
Actins/metabolism , Cilia/metabolism , Fetal Proteins/metabolism , Microfilament Proteins/metabolism , Nuclear Proteins/metabolism , Animals , Centrioles/metabolism , Formins , Golgi Apparatus/metabolism , Mice , NIH 3T3 Cells , Protein Binding
17.
Mol Cancer Res ; 16(6): 1035-1045, 2018 06.
Article in English | MEDLINE | ID: mdl-29523761

ABSTRACT

The Hippo pathway is a signaling cascade that plays important roles in organ size control, tumorigenesis, metastasis, stress response, stem cell differentiation, and renewal during development and tissue homeostasis and mechanotransduction. Recently, it has been observed that loss of the Hippo pathway core component LATS (large tumor suppressor) or overexpression of its downstream targets YAP and its paralog TAZ causes resistance of cancer cells to anti-tubulin drugs. However, YAP and TAZ mediates anti-tubulin drug-induced apoptosis independent of its upstream regulator LATS and the Hippo pathway. Thus, the underlying molecular mechanism of how LATS is involved in the anti-tubulin drug response remains unknown. Proteomic approaches, SILAC and BioID, were used to identify the isomerase Pin1 as a novel LATS-interacting protein after anti-tubulin drug treatment. Treatment with anti-tubulin drugs activated cyclin-dependent kinase 1 (CDK1), which phosphorylates LATS2 at five S/T-P motifs that functionally interact with the WW domain of Pin1 and inhibit its antiapoptotic function. Thus, these data identify Cdk1 and Pin1 as a novel upstream regulator and downstream mediator, respectively, of LATS in antitubulin drug response. Further studies on this novel Cdk1-LATS-Pin1 signaling axis will be important for understanding the molecular mechanisms of drug resistance and will provide useful information for targeting of this pathway in the future.Implications: This study provides new insight on the molecular mechanism of anti-tubulin drug resistance and suggests novel therapeutic targets for drug-resistant cancers. Mol Cancer Res; 16(6); 1035-45. ©2018 AACR.


Subject(s)
CDC2 Protein Kinase/metabolism , Cell Transformation, Neoplastic/genetics , Tubulin/drug effects , Apoptosis , Humans , Phosphorylation , Signal Transduction , Transfection
18.
Cell Chem Biol ; 24(3): 250-251, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28306501

ABSTRACT

In this issue of Cell Chemical Biology, Han et al. (2017) used a powerful combination of quantitative ratiometric mass spectrometry with APEX peroxidase-catalyzed proximity biotinylation to selectively highlight proteins associated with mitochondrial DNA above the background of contaminants and matrix proteins. In addition to identifying novel nucleoid factors, this study extends the APEX strategy to the proteomic mapping of non-membrane-bound multiprotein complexes.


Subject(s)
DNA, Mitochondrial , Proteomics , Biotinylation , Mitochondria/genetics , Proteins
19.
Biochem Biophys Res Commun ; 484(4): 864-870, 2017 03 18.
Article in English | MEDLINE | ID: mdl-28188792

ABSTRACT

Centrosomal protein of 192 kDa (CEP192) is a scaffolding protein that recruits the mitotic protein kinases Aurora A and PLK1 to the centrosome. Here we demonstrate that CEP192 also recruits the type one protein phosphatase (PP1) via a highly conserved KHVTF docking motif. The threonine of the KHVTF motif is phosphorylated during mitosis and protein kinase inhibition studies suggest this to be a PLK1-dependent process.


Subject(s)
Centrosome/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Mitosis/physiology , Receptors, Neuropeptide Y/chemistry , Receptors, Neuropeptide Y/metabolism , Binding Sites , Centrosome/ultrastructure , Enzyme Activation , HeLa Cells , Humans , Phosphorylation , Protein Binding
20.
J Biol Chem ; 292(8): 3389-3399, 2017 02 24.
Article in English | MEDLINE | ID: mdl-28082674

ABSTRACT

The packaging of genomic DNA into nucleosomes creates a barrier to transcription that can be relieved through ATP-dependent chromatin remodeling via complexes such as the switch-sucrose non-fermentable (SWI-SNF) chromatin remodeling complex. The SWI-SNF complex remodels chromatin via conformational or positional changes of nucleosomes, thereby altering the access of transcriptional machinery to target genes. The SWI-SNF complex has limited ability to bind to sequence-specific elements, and, therefore, its recruitment to target loci is believed to require interaction with DNA-associated transcription factors. The Cdx family of homeodomain transcript ion factors (Cdx1, Cdx2, and Cdx4) are essential for a number of developmental programs in the mouse. Cdx1 and Cdx2 also regulate intestinal homeostasis throughout life. Although a number of Cdx target genes have been identified, the basis by which Cdx members impact their transcription is poorly understood. We have found that Cdx members interact with the SWI-SNF complex and make direct contact with Brg1, a catalytic member of SWI-SNF. Both Cdx2 and Brg1 co-occupy a number of Cdx target genes, and both factors are necessary for transcriptional regulation of such targets. Finally, Cdx2 and Brg1 occupancy occurs coincident with chromatin remodeling at some of these loci. Taken together, our findings suggest that Cdx transcription factors regulate target gene expression, in part, through recruitment of Brg1-associated SWI-SNF chromatin remodeling activity.


Subject(s)
CDX2 Transcription Factor/metabolism , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , DNA Helicases/metabolism , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Gene Expression Regulation , HEK293 Cells , Humans , Mice , Protein Interaction Maps
SELECTION OF CITATIONS
SEARCH DETAIL
...