Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Mult Scler ; 30(6): 674-686, 2024 May.
Article in English | MEDLINE | ID: mdl-38646958

ABSTRACT

BACKGROUND: Optic neuritis (ON) is a common feature of inflammatory demyelinating diseases (IDDs) such as multiple sclerosis (MS), aquaporin 4-antibody neuromyelitis optica spectrum disorder (AQP4 + NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). However, the involvement of the optic chiasm (OC) in IDD has not been fully investigated. AIMS: To examine OC differences in non-acute IDD patients with (ON+) and without ON (ON-) using magnetisation transfer ratio (MTR), to compare differences between MS, AQP4 + NMOSD and MOGAD and understand their associations with other neuro-ophthalmological markers. METHODS: Twenty-eight relapsing-remitting multiple sclerosis (RRMS), 24 AQP4 + NMOSD, 28 MOGAD patients and 32 healthy controls (HCs) underwent clinical evaluation, MRI and optical coherence tomography (OCT) scan. Multivariable linear regression models were applied. RESULTS: ON + IDD patients showed lower OC MTR than HCs (28.87 ± 4.58 vs 31.65 ± 4.93; p = 0.004). When compared with HCs, lower OC MTR was found in ON + AQP4 + NMOSD (28.55 ± 4.18 vs 31.65 ± 4.93; p = 0.020) and MOGAD (28.73 ± 4.99 vs 31.65 ± 4.93; p = 0.007) and in ON- AQP4 + NMOSD (28.37 ± 7.27 vs 31.65 ± 4.93; p = 0.035). ON+ RRMS had lower MTR than ON- RRMS (28.87 ± 4.58 vs 30.99 ± 4.76; p = 0.038). Lower OC MTR was associated with higher number of ON (regression coefficient (RC) = -1.15, 95% confidence interval (CI) = -1.819 to -0.490, p = 0.001), worse visual acuity (RC = -0.026, 95% CI = -0.041 to -0.011, p = 0.001) and lower peripapillary retinal nerve fibre layer (pRNFL) thickness (RC = 1.129, 95% CI = 0.199 to 2.059, p = 0.018) when considering the whole IDD group. CONCLUSION: OC microstructural damage indicates prior ON in IDD and is linked to reduced vision and thinner pRNFL.


Subject(s)
Aquaporin 4 , Autoantibodies , Multiple Sclerosis, Relapsing-Remitting , Myelin-Oligodendrocyte Glycoprotein , Neuromyelitis Optica , Optic Chiasm , Tomography, Optical Coherence , Adult , Female , Humans , Male , Middle Aged , Aquaporin 4/immunology , Autoantibodies/blood , Magnetic Resonance Imaging , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/pathology , Myelin-Oligodendrocyte Glycoprotein/immunology , Neuromyelitis Optica/immunology , Neuromyelitis Optica/diagnostic imaging , Neuromyelitis Optica/pathology , Optic Chiasm/pathology , Optic Chiasm/diagnostic imaging , Optic Neuritis/immunology , Optic Neuritis/diagnostic imaging , Optic Neuritis/pathology , Young Adult
2.
Article in English | MEDLINE | ID: mdl-36878713

ABSTRACT

BACKGROUND AND OBJECTIVES: With the increasing use of visually evoked potentials (VEPs) as quantitative outcome parameters for myelin in clinical trials, an in-depth understanding of longitudinal VEP latency changes and their prognostic potential for subsequent neuronal loss will be required. In this longitudinal multicenter study, we evaluated the association and prognostic potential of VEP latency for retinal neurodegeneration, measured by optical coherence tomography (OCT), in relapsing-remitting MS (RRMS). METHODS: We included 293 eyes of 147 patients with RRMS (age [years, median ± SD] 36 ± 10, male sex 35%, F/U [years, median {IQR} 2.1 {1.5-3.9}]): 41 eyes had a history of optic neuritis (ON) ≥6 months before baseline (CHRONIC-ON), and 252 eyes had no history of ON (CHRONIC-NON). P100 latency (VEP), macular combined ganglion cell and inner plexiform layer volume (GCIPL), and peripapillary retinal nerve fiber layer thickness (pRNFL) (OCT) were quantified. RESULTS: P100 latency change over the first year predicted subsequent GCIPL loss (36 months) across the entire chronic cohort (p = 0.001) and in (and driven by) the CHRONIC-NON subset (p = 0.019) but not in the CHRONIC-ON subset (p = 0.680). P100 latency and pRNFL were correlated at baseline (CHRONIC-NON p = 0.004, CHRONIC-ON p < 0.001), but change in P100 latency and pRNFL were not correlated. P100 latency did not differ longitudinally between protocols or centers. DISCUSSION: VEP in non-ON eyes seems to be a promising marker of demyelination in RRMS and of potential prognostic value for subsequent retinal ganglion cell loss. This study also provides evidence that VEP may be a useful and reliable biomarker for multicenter studies.


Subject(s)
Multiple Sclerosis , Optic Neuritis , Humans , Male , Evoked Potentials , Prognosis , Retina , Retinal Ganglion Cells , Female , Adult , Middle Aged
3.
Neurology ; 100(3): e308-e323, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36192175

ABSTRACT

BACKGROUND AND OBJECTIVES: Relapsing-remitting multiple sclerosis (RRMS), aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD), and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) may have overlapping clinical features. There is an unmet need for imaging markers that differentiate between them when serologic testing is unavailable or ambiguous. We assessed whether imaging characteristics typical of MS discriminate RRMS from AQP4-NMOSD and MOGAD, alone and in combination. METHODS: Adult, nonacute patients with RRMS, APQ4-NMOSD, and MOGAD and healthy controls were prospectively recruited at the National Hospital for Neurology and Neurosurgery (London, United Kingdom) and the Walton Centre (Liverpool, United Kingdom) between 2014 and 2019. They underwent conventional and advanced brain, cord, and optic nerve MRI and optical coherence tomography (OCT). RESULTS: A total of 91 consecutive patients (31 RRMS, 30 APQ4-NMOSD, and 30 MOGAD) and 34 healthy controls were recruited. The most accurate measures differentiating RRMS from AQP4-NMOSD were the proportion of lesions with the central vein sign (CVS) (84% vs 33%, accuracy/specificity/sensitivity: 91/88/93%, p < 0.001), followed by cortical lesions (median: 2 [range: 1-14] vs 1 [0-1], accuracy/specificity/sensitivity: 84/90/77%, p = 0.002) and white matter lesions (mean: 39.07 [±25.8] vs 9.5 [±14], accuracy/specificity/sensitivity: 78/84/73%, p = 0.001). The combination of higher proportion of CVS, cortical lesions, and optic nerve magnetization transfer ratio reached the highest accuracy in distinguishing RRMS from AQP4-NMOSD (accuracy/specificity/sensitivity: 95/92/97%, p < 0.001). The most accurate measures favoring RRMS over MOGAD were white matter lesions (39.07 [±25.8] vs 1 [±2.3], accuracy/specificity/sensitivity: 94/94/93%, p = 0.006), followed by cortical lesions (2 [1-14] vs 1 [0-1], accuracy/specificity/sensitivity: 84/97/71%, p = 0.004), and retinal nerve fiber layer thickness (RNFL) (mean: 87.54 [±13.83] vs 75.54 [±20.33], accuracy/specificity/sensitivity: 80/79/81%, p = 0.009). Higher cortical lesion number combined with higher RNFL thickness best differentiated RRMS from MOGAD (accuracy/specificity/sensitivity: 84/92/77%, p < 0.001). DISCUSSION: Cortical lesions, CVS, and optic nerve markers achieve a high accuracy in distinguishing RRMS from APQ4-NMOSD and MOGAD. This information may be useful in clinical practice, especially outside the acute phase and when serologic testing is ambiguous or not promptly available. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that selected conventional and advanced brain, cord, and optic nerve MRI and OCT markers distinguish adult patients with RRMS from AQP4-NMOSD and MOGAD.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Neuromyelitis Optica , Humans , Multiple Sclerosis/diagnostic imaging , Aquaporin 4 , Myelin-Oligodendrocyte Glycoprotein , Retina/pathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Autoantibodies
4.
BJPsych Open ; 6(5): e105, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32696735

ABSTRACT

To date, there have been no detailed reports of patients developing persistent psychotic symptoms following Coronavirus disease 2019 (COVID-19) infection. There have been reports of patients developing transient delirium (with and without hypoxia) after COVID-19 infection as well as other neurological manifestations. We report on a female patient who, post-COVID-19 infection, developed an initial delirium followed by persistent and florid psychotic symptoms consisting of persecutory delusion, complex visual and auditory hallucinations and Capgras phenomenon in the absence of hypoxia but elevated tumour necrosis factor (TNF)-α. The psychotic symptoms persisted for about 40 days. Her magnetic resonance imaging brain scan, electroencephalogram, cerebrospinal fluid examination and extensive autoimmune panel did not show any abnormalities. The cause of the psychotic symptoms in this patient were not ascertained but we propose either an inflammatory state, characterised by the patient's elevated TNF-alpha levels as a possible contributing mechanism for her psychosis in line with the proinflammatory changes observed in some cases of psychosis. Or, an alternative, but unproven, hypothesis is one of an antibody-mediated encephalitic event induced by viral infection.

6.
Acute Med ; 13(3): 121-5, 2014.
Article in English | MEDLINE | ID: mdl-25229063

ABSTRACT

Acute confusion and hyponatraemia are common presentations in acute medicine. We report two cases of anti-voltage gated potassium channel (VGKC) antibody-related limbic encephalitis highlighting the variable presentation of this condition. Both patients were thoroughly investigated with MRI scan of brain, lumbar puncture, EEG as well as infective and autoimmune screens for encephalitis. Anti-VGKC antibodies were positive for both patients and prompt treatment with immunotherapy yielded good recovery. Patients presenting with confusion and seizures who have no demonstrable infectious or metabolic cause should have investigation for an autoimmune cause expedited. In addition, psychiatric presentations with atypical features such as drowsiness should prompt similar investigations. The outcome of anti-VGKCrelated limbic encephalitis is improved with early treatment employing steroids or immunotherapy.


Subject(s)
Brain/pathology , Limbic Encephalitis/diagnosis , Magnetic Resonance Imaging/methods , Seizures/diagnosis , Spinal Puncture/methods , Adult , Diagnosis, Differential , Female , Humans , Limbic Encephalitis/complications , Male , Seizures/etiology
7.
Brain ; 133(9): 2592-602, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20566483

ABSTRACT

Following an episode of optic neuritis, thinning of the retinal nerve fibre layer, which indicates axonal loss, is observed using optical coherence tomography. The longitudinal course of the retinal changes has not been well characterized. We performed a serial optical coherence tomography study in patients presenting with optic neuritis in order to define the temporal evolution of retinal nerve fibre layer changes and to estimate sample sizes for proof-of-concept trials of neuroprotection using retinal nerve fibre layer loss as the outcome measure. Twenty-three patients (7 male, 16 female, mean age 31 years) with acute clinically isolated unilateral optic neuritis were recruited to undergo optical coherence tomography, visual assessments and visual evoked potentials at presentation (median 16 days from onset of visual loss) and after 3, 6, 12 and 18 months. Compared with the clinically unaffected fellow eye, the retinal nerve fibre layer thickness of the affected eye was significantly increased at presentation and significantly reduced at all later time points. The evolution of retinal nerve fibre layer changes in the affected eye fitted well with an exponential model, with thinning appearing a mean of 1.6 months from symptom onset and the rate of ongoing retinal nerve fibre layer loss decreasing thereafter. At presentation, increased retinal nerve fibre layer thickness was associated with impaired visual acuity and prolonged visual evoked potential latency. Visual function after 12 months was not related to the extent of acute retinal nerve fibre layer swelling but was significantly associated with the extent of concurrent retinal nerve fibre layer loss. Sample size calculations for placebo-controlled trials of acute neuroprotection indicated that the numbers needed after 6 months of follow up are smaller than those after 3 months and similar to those after 12 months of follow-up. Study power was greater when investigating differences between clinically unaffected and affected eyes rather than retinal nerve fibre layer thickness of the affected eye alone. Inflammation in the optic nerve and impaired axonal transport (implied by retinal nerve fibre layer swelling) are associated with visual dysfunction and demyelination (long visual evoked potential latency) during acute optic neuritis. Retinal nerve fibre layer thinning is usually evident within 3 months. Optical coherence tomography-measured retinal nerve fibre layer loss after 6 months is a suitable outcome measure for proof-of-concept trials of acute neuroprotection in optic neuritis.


Subject(s)
Optic Neuritis/pathology , Retina/pathology , Retina/physiopathology , Adult , Evoked Potentials, Visual/physiology , Female , Functional Laterality , Humans , Linear Models , Longitudinal Studies , Macula Lutea/pathology , Male , Middle Aged , Models, Biological , Nerve Fibers/pathology , Neuroprotective Agents/therapeutic use , Optic Neuritis/physiopathology , Optic Neuritis/therapy , Reaction Time/physiology , Retinal Ganglion Cells/physiology , Time Factors , Tomography, Optical Coherence/methods , Visual Acuity/physiology , Young Adult
8.
Lancet Neurol ; 5(10): 853-63, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16987732

ABSTRACT

We do not have currently satisfactory clinical and anatomical correlates to gauge disability in multiple sclerosis. Structural biomarkers (such as MRI) are hindered because they cannot precisely segregate demyelination from axonal elements of tissue injury within the CNS. Axonal degeneration in multiple sclerosis is related to irreversible disability, which suggests that the confirmation of neuroprotective strategies needs highly quantifiable measures of axon loss that can be correlated with reliable measures of physiological function. The coupling of quantifiable measures of visual function with ocular imaging techniques, such as optical coherence tomography, enables us to begin to understand how structural changes in the visual system influence function in patients with multiple sclerosis. In this review, we consider the usefulness of optical imaging of the retina as a biomarker for neurodegeneration in multiple-sclerosis.


Subject(s)
Multiple Sclerosis/diagnosis , Biomarkers , Humans , Multiple Sclerosis/complications , Multiple Sclerosis/pathology , Optic Nerve/pathology , Optic Nerve Diseases/diagnosis , Optic Nerve Diseases/epidemiology , Optic Nerve Diseases/pathology , Retina/pathology , Retinal Degeneration/diagnosis , Retinal Degeneration/epidemiology , Retinal Degeneration/pathology , Tomography, Optical Coherence
SELECTION OF CITATIONS
SEARCH DETAIL
...