Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Hepatol Commun ; 8(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38836842

ABSTRACT

BACKGROUND: Patients with pediatric cirrhosis-sepsis (PC-S) attain early mortality. Plasma bacterial composition, the cognate metabolites, and their contribution to the deterioration of patients with PC-S to early mortality are unknown. We aimed to delineate the plasma metaproteome-metabolome landscape and identify molecular indicators capable of segregating patients with PC-S predisposed to early mortality in plasma, and we further validated the selected metabolite panel in paired 1-drop blood samples using untargeted metaproteomics-metabolomics by UHPLC-HRMS followed by validation using machine-learning algorithms. METHODS: We enrolled 160 patients with liver diseases (cirrhosis-sepsis/nonsepsis [n=110] and noncirrhosis [n=50]) and performed untargeted metaproteomics-metabolomics on a training cohort of 110 patients (Cirrhosis-Sepsis/Nonsepsis, n=70 and noncirrhosis, n=40). The candidate predictors were validated on 2 test cohorts-T1 (plasma test cohort) and T2 (1-drop blood test cohort). Both T1 and T2 had 120 patients each, of which 70 were from the training cohort. RESULTS: Increased levels of tryptophan metabolites and Salmonella enterica and Escherichia coli-associated peptides segregated patients with cirrhosis. Increased levels of deoxyribose-1-phosphate, N5-citryl-d-ornithine, and Herbinix hemicellulolytic and Leifsonia xyli segregated patients with PC-S. MMCN-based integration analysis of WMCNA-WMpCNA identified key microbial-metabolic modules linked to PC-S nonsurvivors. Increased Indican, Staphylobillin, glucose-6-phosphate, 2-octenoylcarnitine, palmitic acid, and guanidoacetic acid along with L. xyli, Mycoplasma genitalium, and Hungateiclostridium thermocellum segregated PC-S nonsurvivors and superseded the liver disease severity indices with high accuracy, sensitivity, and specificity for mortality prediction using random forest machine-learning algorithm. CONCLUSIONS: Our study reveals a novel metabolite signature panel capable of segregating patients with PC-S predisposed to early mortality using as low as 1-drop blood.


Subject(s)
Liver Cirrhosis , Metabolomics , Sepsis , Humans , Male , Female , Liver Cirrhosis/blood , Liver Cirrhosis/mortality , Child , Adolescent , Sepsis/blood , Sepsis/mortality , Sepsis/microbiology , Biomarkers/blood , Child, Preschool , Machine Learning , Metabolome , Bacterial Proteins/blood
2.
Sci Rep ; 14(1): 14822, 2024 06 27.
Article in English | MEDLINE | ID: mdl-38937564

ABSTRACT

Milk is a good source of nutrition but is also a source of allergenic proteins such as α-lactalbumin, ß-lactoglobulin (BLG), casein, and immunoglobulins. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas technology has the potential to edit any gene, including milk allergens. Previously, CRISPR/Cas has been successfully employed in dairy cows and goats, but buffaloes remain unexplored for any milk trait. In this study, we utilized the CRISPR/Cas9 system to edit the major milk allergen BLG gene in buffaloes. First, the editing efficiency of designed sgRNAs was tested in fibroblast cells using the T7E assay and Sanger sequencing. The most effective sgRNA was selected to generate clonal lines of BLG-edited cells. Analysis of 15 single-cell clones, through TA cloning and Sanger sequencing, revealed that 7 clones exhibited bi-allelic (-/-) heterozygous, bi-allelic (-/-) homozygous, and mono-allelic (-/+) disruptions in BLG. Bioinformatics prediction analysis confirmed that non-multiple-of-3 edited nucleotide cell clones have frame shifts and early truncation of BLG protein, while multiple-of-3 edited nucleotides resulted in slightly disoriented protein structures. Somatic cell nuclear transfer (SCNT) method was used to produce blastocyst-stage embryos that have similar developmental rates and quality with wild-type embryos. This study demonstrated the successful bi-allelic editing (-/-) of BLG in buffalo cells through CRISPR/Cas, followed by the production of BLG-edited blastocyst stage embryos using SCNT. With CRISPR and SCNT methods described herein, our long-term goal is to generate gene-edited buffaloes with BLG-free milk.


Subject(s)
Buffaloes , CRISPR-Cas Systems , Gene Editing , Lactoglobulins , Animals , Lactoglobulins/genetics , Buffaloes/genetics , Gene Editing/methods , RNA, Guide, CRISPR-Cas Systems/genetics , Milk/metabolism , Fibroblasts/metabolism
3.
Indian J Clin Biochem ; 39(2): 221-225, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38577146

ABSTRACT

In severe acute malnutrition, micronutrient deficiency as well as protein energy malnutrition is a major obstacle to growth & development. Iron deficiency dominates the spectrum of nutritional anemia. After taking informed consent, 211 SAM children and 211 age-and sex-matched healthy children with normal nutritional status were enrolled for the study. MUAC was used to diagnose SAM. A 5-part automated hematoanalyzer was used to measure the complete blood count and red cell indices, and the peripheral smear method to determine the red cell morphology. We measured serum ferritin, Vitamin B12, and folic acid using the ELISA method. Compared to controls, children with SAM had significantly lower red cell indices, platelet counts, and white cell counts. The most common clinical symptoms seen in SAM children were diarrhea, pneumonia, acute gastroenteritis, and acute respiratory infection. Children with SAM are more likely to suffer from iron deficiency and B12 deficiency. Severe vitamin B12 deficiency was more frequently associated with severe anemia. The severe anemia in SAM children constantly changes the body's defense mechanism, affecting the haematopoiesis. In this study, haematological indices are recommended for predicting severity of anemia, and hematopoietic changes are described, in order to improve anticipatory care and outcome in children with SAM.

4.
Liver Int ; 44(5): 1189-1201, 2024 May.
Article in English | MEDLINE | ID: mdl-38358068

ABSTRACT

BACKGROUND AND AIMS: Acute-on-chronic liver failure (ACLF) is a serious illness associated with altered metabolome, organ failure and high mortality. Need for therapies to improve the metabolic milieu and support liver regeneration are urgently needed. METHODS: We investigated the ability of haemoperfusion adsorption (HA) and therapeutic plasma exchange (TPE) in improving the metabolic profile and survival in ACLF patients. Altogether, 45 ACLF patients were randomized into three groups: standard medical therapy (SMT), HA and TPE groups. Plasma metabolomics was performed at baseline, post-HA and TPE sessions on days 7 and 14 using high-resolution mass spectrometry. RESULTS: The baseline clinical/metabolic profiles of study groups were comparable. We identified 477 metabolites. Of these, 256 metabolites were significantly altered post 7 days of HA therapy (p < .05, FC > 1.5) and significantly reduced metabolites linked to purine (12 metabolites), tryptophan (7 metabolites), primary bile acid (6 metabolites) and arginine-proline metabolism (6 metabolites) and microbial metabolism respectively (p < .05). Metabolites linked to taurine-hypotaurine and histidine metabolism were reduced and temporal increase in metabolites linked to phenylalanine and tryptophan metabolism was observed post-TPE therapy (p < .05). Finally, weighted metabolite correlation network analysis (WMCNA) along with inter/intragroup analysis confirmed significant reduction in inflammatory (tryptophan, arachidonic acid and bile acid metabolism) and secondary energy metabolic pathways post-HA therapy compared to TPE and SMT (p < .05). Higher baseline plasma level of 11-deoxycorticosterone (C03205; AUROC > 0.90, HR > 3.2) correlated with severity (r2 > 0.5, p < .05) and mortality (log-rank-p < .05). Notably, 51 of the 64 metabolite signatures (ACLF non-survivor) were reversed post-HA treatment compared to TPE and SMT(p < .05). CONCLUSION: HA more potentially (~80%) improves plasma milieu compared to TPE and SMT. High baseline plasma 11-deoxycorticosterone level correlates with early mortality in ACLF patients.


Subject(s)
Acute-On-Chronic Liver Failure , Hemoperfusion , Humans , Adsorption , Tryptophan , Metabolome , Bile Acids and Salts , Desoxycorticosterone
5.
Int J Mol Sci ; 24(14)2023 Jul 23.
Article in English | MEDLINE | ID: mdl-37511573

ABSTRACT

Chimerism monitoring after allogenic Hematopoietic Cell Transplantation (allo-HCT) is critical to determine how well donor cells have engrafted and to detect relapse for early therapeutic intervention. The aim of this study was to establish and detect mixed chimerism and minimal residual disease using Next Generation Sequencing (NGS) testing for the evaluation of engraftment and the detection of early relapse after allo-HCT. Our secondary aim was to compare the data with the existing laboratory method based on Short Tandem Repeat (STR) analysis. One hundred and seventy-four DNA specimens from 46 individuals were assessed using a commercially available kit for NGS, AlloSeq HCT NGS (CareDx), and the STR-PCR assay. The sensitivity, precision, and quantitative accuracy of the assay were determined using artificially created chimeric constructs. The accuracy and linearity of the assays were evaluated in 46 post-transplant HCT samples consisting of 28 levels of mixed chimerism, which ranged from 0.3-99.7%. There was a 100% correlation between NGS and STR-PCR chimerism methods. In addition, 100% accuracy was attained for the two external proficiency testing surveys (ASHI EMO). The limit of detection or sensitivity of the NGS assay in artificially made chimerism mixtures was 0.3%. We conducted a review of all NGS chimerism studies published online, including ours, and concluded that NGS-based chimerism analysis using the AlloSeq HCT assay is a sensitive and accurate method for donor-recipient chimerism quantification and minimal residual disease relapse detection in patients after allo-HCT compared to STR-PCR assay.


Subject(s)
Chimerism , Hematopoietic Stem Cell Transplantation , Humans , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics , High-Throughput Nucleotide Sequencing , Neoplasm Recurrence, Local/genetics , Chronic Disease , Transplantation Chimera/genetics
6.
iScience ; 26(5): 106644, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37192966

ABSTRACT

Bacille Calmette-Guerin (BCG) generates limited long-lasting adaptive memory responses leading to short-lived protection against adult pulmonary tuberculosis (TB). Here, we show that host sirtuin 2 (SIRT2) inhibition by AGK2 significantly enhances the BCG vaccine efficacy during primary infection and TB recurrence through enhanced stem cell memory (TSCM) responses. SIRT2 inhibition modulated the proteome landscape of CD4+ T cells affecting pathways involved in cellular metabolism and T-cell differentiation. Precisely, AGK2 treatment enriched the IFNγ-producing TSCM cells by activating ß-catenin and glycolysis. Furthermore, SIRT2 specifically targeted histone H3 and NF-κB p65 to induce proinflammatory responses. Finally, inhibition of the Wnt/ß-catenin pathway abolished the protective effects of AGK2 treatment during BCG vaccination. Taken together, this study provides a direct link between BCG vaccination, epigenetics, and memory immune responses. We identify SIRT2 as a key regulator of memory T cells during BCG vaccination and project SIRT2 inhibitors as potential immunoprophylaxis against TB.

7.
J Hepatol ; 79(3): 677-691, 2023 09.
Article in English | MEDLINE | ID: mdl-37116716

ABSTRACT

BACKGROUND & AIMS: Acute liver failure (ALF) is associated with high mortality. Alterations in albumin structure and function have been shown to correlate with outcomes in cirrhosis. We undertook a biomolecular analysis of albumin to determine its correlation with hepatocellular injury and early mortality in ALF. METHODS: Altogether, 225 participants (200 patients with ALF and 25 healthy controls [HC]) were enrolled. Albumin was purified from the baseline plasma of the training cohort (ALF, n = 40; survivors, n = 8; non-survivors, n = 32; and HC, n = 5); analysed for modifications, functionality, and bound multi-omics signatures; and validated in a test cohort (ALF, n = 160; survivors, n = 53; non-survivors, n = 107; and HC, n = 20). RESULTS: In patients with ALF, albumin is more oxidised and glycosylated with a distinct multi-omics profile than that in HC, more so in non-survivors (p <0.05). In non-survivors, albumin was more often bound (p <0.05, false discovery rate <0.01) to proteins associated with inflammation, advanced glycation end product, metabolites linked to arginine, proline metabolism, bile acid, and mitochondrial breakdown products. Increased bacterial taxa (Listeria, Clostridium, etc.) correlated with lipids (triglycerides [4:0/12:0/12:0] and phosphatidylserine [39:0]) and metabolites (porphobilinogen and nicotinic acid) in non-survivors (r2 >0.7). Multi-omics signature-based probability of detection for non-survival was >90% and showed direct correlation with albumin functionality and clinical parameters (r2 >0.85). Probability-of-detection metabolites built on the top five metabolites, namely, nicotinic acid, l-acetyl carnitine, l-carnitine, pregnenolone sulfate, and N-(3-hydroxybutanoyl)-l-homoserine lactone, showed diagnostic accuracy of 98% (AUC 0.98, 95% CI 0.95-1.0) and distinguish patients with ALF predisposed to early mortality (log-rank <0.05). On validation using high-resolution mass spectrometry and five machine learning algorithms in test cohort 1 (plasma and paired one-drop blood), the metabolome panel showed >92% accuracy/sensitivity and specificity for prediction of mortality. CONCLUSIONS: In ALF, albumin is hyperoxidised and substantially dysfunctional. Our study outlines distinct 'albuminome' signatures capable of distinguishing patients with ALF predisposed to early mortality or requiring emergency liver transplantation. IMPACTS AND IMPLICATIONS: Here, we report that the biomolecular map of albumin is distinct and linked to severity and outcome in patients with acute liver failure (ALF). Detailed structural, functional, and albumin-omics analysis in patients with ALF led to the identification and classification of albumin-bound biomolecules, which could segregate patients with ALF predisposed to early mortality. More importantly, we found albumin-bound metabolites indicative of mitochondrial damage and hyperinflammation as a putative indicator of <30-day mortality in patients with ALF. This preclinical study validates the utility of albuminome analysis for understanding the pathophysiology and development of poor outcome indicators in patients with ALF.


Subject(s)
Liver Failure, Acute , Liver Transplantation , Niacin , Humans , Liver Cirrhosis/complications , Albumins
9.
Int J Mol Sci ; 23(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36555525

ABSTRACT

The persistence of graft-versus-host disease (GVHD) as the principal complication of allogeneic hematopoietic cell transplantation (HCT) demonstrates that HLA matching alone is insufficient to prevent alloreactivity. We performed molecular and functional characterization of 22 candidate cytokine genes for their potential to improve matching in 315 myeloablative, 10/10 HLA-matched donor−recipient pairs. Recipients of a graft carrying the -1082GG IL10 gene promoter region variant had a three-fold lower incidence of grade II−IV acute GVHD compared to IL10-1082AA graft recipients (SHR = 0.25, p = 0.005). This was most evident in matched unrelated donor (MUD) transplants, where the greatest alloreactivity is expected. IL10-1082GG transplants did not experience an increased incidence of relapse, and, consequently, overall survival was two-fold higher in IL10-1082GG MUD transplants (HR = 0.17, p = 0.023). Longitudinal post-transplant measurements demonstrated that -1082GG is a high-IL10-producing and -expressing genotype with attenuated CD8+ T-cell reconstitution. High post-transplant donor chimerism in T- and myeloid-cells (>95%) confirmed a predominant donor, rather than recipient, genotype effect on immune function and aGVHD. To date, this is the first study to report corroborating genome-to-cellular evidence for a non-HLA donor immunogenetic variant that appears to be protective against GVHD. The incorporation of IL10 variants in donor selection criteria and clinical-management decisions has the potential to improve patient outcomes.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Interleukin-10 , Humans , Genetic Predisposition to Disease , Graft vs Host Disease/genetics , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Interleukin-10/genetics , Tissue Donors
10.
PLoS One ; 17(9): e0274621, 2022.
Article in English | MEDLINE | ID: mdl-36149918

ABSTRACT

This work quantifies the impact of pre-, during- and post-lockdown periods of 2020 and 2019 imposed due to COVID-19, with regards to a set of satellite-based environmental parameters (greenness using Normalized Difference Vegetation and water indices, land surface temperature, night-time light, and energy consumption) in five alpha cities (Kuala Lumpur, Mexico, greater Mumbai, Sao Paulo, Toronto). We have inferenced our results with an extensive questionnaire-based survey of expert opinions about the environment-related UN Sustainable Development Goals (SDGs). Results showed considerable variation due to the lockdown on environment-related SDGs. The growth in the urban environmental variables during lockdown phase 2020 relative to a similar period in 2019 varied from 13.92% for Toronto to 13.76% for greater Mumbai to 21.55% for Kuala Lumpur; it dropped to -10.56% for Mexico and -1.23% for Sao Paulo city. The total lockdown was more effective in revitalizing the urban environment than partial lockdown. Our results also indicated that Greater Mumbai and Toronto, which were under a total lockdown, had observed positive influence on cumulative urban environment. While in other cities (Mexico City, Sao Paulo) where partial lockdown was implemented, cumulative lockdown effects were found to be in deficit for a similar period in 2019, mainly due to partial restrictions on transportation and shopping activities. The only exception was Kuala Lumpur which observed surplus growth while having partial lockdown because the restrictions were only partial during the festival of Ramadan. Cumulatively, COVID-19 lockdown has contributed significantly towards actions to reduce degradation of natural habitat (fulfilling SDG-15, target 15.5), increment in available water content in Sao Paulo urban area(SDG-6, target 6.6), reduction in NTL resulting in reducied per capita energy consumption (SDG-13, target 13.3).


Subject(s)
COVID-19 , Sustainable Development , Brazil , COVID-19/epidemiology , COVID-19/prevention & control , Cities/epidemiology , Communicable Disease Control , Humans , United Nations , Water
11.
Cytotherapy ; 24(12): 1225-1231, 2022 12.
Article in English | MEDLINE | ID: mdl-36057497

ABSTRACT

BACKGROUND AIMS: The value of routine chimerism determination after myeloablative hematopoietic cell transplantation (HCT) is unclear, particularly in the setting of anti-thymocyte globulin (ATG)-based graft-versus-host disease (GVHD) prophylaxis. METHODS: Blood samples were collected at 3 months post-HCT from 558 patients who received myeloablative conditioning and ATG-based GVHD prophylaxis. Chimerism was assessed using multiplex polymerase chain reaction of short tandem repeats in sorted T cells (CD3+) and leukemia lineage cells (CD13+CD33+ for myeloid malignancies and CD19+ for B-lymphoid malignancies). ATG exposure was determined using a flow cytometry-based assay. The primary outcomes of interest were relapse and chronic GVHD (cGVHD). RESULTS: Incomplete (<95%) T-cell chimerism and leukemia lineage chimerism were present in 17% and 4% of patients, respectively. Patients with incomplete T-cell chimerism had a significantly greater incidence of relapse (36% versus 22%, subhazard ratio [SHR] = 2.03, P = 0.001) and lower incidence of cGVHD (8% versus 25%, SHR = 0.29, P < 0.001) compared with patients with complete chimerism. In multivariate modeling, patients with high post-transplant ATG area under the curve and any cytomegalovirus (CMV) serostatus other than donor/recipient seropositivity (non-D+R+) had an increased likelihood of incomplete T-cell chimerism. Patients with incomplete leukemia lineage chimerism had a significantly greater incidence of relapse (50% versus 23%, SHR = 2.70, P = 0.011) and, surprisingly, a greater incidence of cGVHD (45% versus 20%, SHR = 2.64, P = 0.003). CONCLUSIONS: High post-transplant ATG exposure and non-D+R+ CMV serostatus predispose patients to incomplete T-cell chimerism, which is associated with an increased risk of relapse. The increased risk of cGVHD with incomplete B-cell/myeloid chimerism is a novel finding that suggests an important role for recipient antigen-presenting cells in cGVHD pathogenesis.


Subject(s)
Cytomegalovirus Infections , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia , Humans , Graft vs Host Disease/prevention & control , Antilymphocyte Serum , Chimerism , Hematopoietic Stem Cell Transplantation/adverse effects , Risk Factors , Chronic Disease , Cytomegalovirus , Recurrence
13.
Hepatology ; 76(4): 920-935, 2022 10.
Article in English | MEDLINE | ID: mdl-35357716

ABSTRACT

BACKGROUND AND AIMS: Histopathological examination is the gold standard for detection of gallstone (GS) or gallbladder carcinoma (CAGB). Bile concentrated in the gallbladder (GB) is expected to recapitulate metagenomics and molecular changes associated with development of CAGB. APPROACH AND RESULTS: Bile samples were screened for lipidomics and metaproteome (metagenomics) signatures capable of early detection of cancer in GB anomalies. Analysis of the training cohort (n = 87) showed that metastability of bile was reduced in CAGB (p < 0.05). CAGB bile showed significant alteration of lipidome and microbiome as indicated by multivariate partial least squares regression analysis and alpha-diversity and beta-diversity indexes (p < 0.05). Significant reduction of lipid species and increase in bacterial taxa were found to be associated with patients with CAGB, CAGB with GS, and GS (p < 0.05, log fold change >1.5). A multimodular correlation network created using weighted lipid/metaproteomic correlation network analysis showed striking associations between lipid and metaproteomic modules and functionality. CAGB-linked metaproteomic modules/functionality directly correlated with lipid modules, species, clinical parameters, and bile acid profile (p < 0.05). Increased bacterial taxa (Leptospira, Salmonella enterica, Mycoplasma gallisepticum) and their functionality showed a direct correlation with lipid classes such as lysophosphatidylinositol, ceramide 1-phosphate, and lysophosphatidylethanolamine and development of CAGB (r2  > 0.85). Lipid/metaproteomic signature-based probability of detection for CAGB was > 90%, whereas that for GS was > 80% (p < 0.05). Validation of eight lipid species using four machine learning algorithms in two separate cohorts (n = 38; bile [test cohort 1] and paired plasma [test cohort 2]) showed accuracy (99%) and sensitivity/specificity (>98%) for CAGB detection. CONCLUSIONS: Bile samples of patients with CAGB showed significant reduction in lipid species and increase in bacterial taxa. Our study identifies a core set of bile lipidome and metaproteome signatures which may offer universal utility for early diagnosis of CAGB.


Subject(s)
Carcinoma , Gallstones , Bile , Bile Acids and Salts , Gallbladder , Humans , Lipids/analysis , Peptides
14.
STAR Protoc ; 3(1): 101045, 2022 03 18.
Article in English | MEDLINE | ID: mdl-34870243

ABSTRACT

In this protocol, we describe global proteome profiling for the respiratory specimen of COVID-19 patients, patients suspected with COVID-19, and H1N1 patients. In this protocol, details for identifying host, viral, or bacterial proteome (Meta-proteome) are provided. Major steps of the protocol include virus inactivation, protein quantification and digestion, desalting of peptides, high-resolution mass spectrometry (HRMS)-based analysis, and downstream bioinformatics analysis. For complete details on the use and execution of this profile, please refer to Maras et al. (2021).


Subject(s)
COVID-19/diagnosis , Genomics/methods , Proteomics/methods , COVID-19/metabolism , Chromatography, Liquid/methods , Computational Biology , Diagnostic Tests, Routine , Gene Expression Profiling , Genetic Techniques , Genome, Viral/genetics , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H1N1 Subtype/pathogenicity , Peptides , Proteome , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Specimen Handling/methods , Tandem Mass Spectrometry/methods , Virome/genetics , Virome/physiology
15.
STAR Protoc ; 3(1): 101051, 2022 03 18.
Article in English | MEDLINE | ID: mdl-34877545

ABSTRACT

Here we describe a protocol for identifying metabolites in respiratory specimens of patients that are SARS-CoV-2 positive, SARS-CoV-2 negative, or H1N1 positive. This protocol provides step-by-step instructions on sample collection from patients, followed by metabolite extraction. We use ultra-high-pressure liquid chromatography (UHPLC) coupled with high-resolution mass spectrometry (HRMS) for data acquisition and describe the steps for data analysis. The protocol was standardized with specific customization for SARS-CoV-2-containing respiratory specimens. For complete details on the use and execution of this protocol, please refer to Maras et al. (2021).


Subject(s)
COVID-19/diagnosis , Chromatography, High Pressure Liquid/methods , Metabolomics/methods , COVID-19/metabolism , Computational Biology , Diagnostic Tests, Routine , Gene Expression Profiling , Genetic Techniques , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H1N1 Subtype/pathogenicity , Mass Spectrometry/methods , Metabolome , Reference Standards , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Specimen Handling/methods
16.
Math Biosci Eng ; 18(6): 8727-8757, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34814320

ABSTRACT

Healthcare systems constitute a significant portion of smart cities infrastructure. The aim of smart healthcare is two folds. The internal healthcare system has a sole focus on monitoring vital parameters of patients. The external systems provide proactive health care measures by the surveillance mechanism. This system utilizes the surveillance mechanism giving impetus to healthcare tagging requirements on the general public. The work exclusively deals with the mass gatherings and crowded places scenarios. Crowd gatherings and public places management is a vital challenge in any smart city environment. Protests and dissent are commonly observed crowd behavior. This behavior has the inherent capacity to transform into violent behavior. The paper explores a novel and deep learning-based method to provide an Internet of Things (IoT) environment-based decision support system for tagging healthcare systems for the people who are injured in crowd protests and violence. The proposed system is intelligent enough to classify protests into normal, medium and severe protest categories. The level of the protests is directly tagged to the nearest healthcare systems and generates the need for specialist healthcare professionals. The proposed system is an optimized solution for the people who are either participating in protests or stranded in such a protest environment. The proposed solution allows complete tagging of specialist healthcare professionals for all types of emergency response in specialized crowd gatherings. Experimental results are encouraging and have shown the proposed system has a fairly promising accuracy of more than eight one percent in classifying protest attributes and more than ninety percent accuracy for differentiating protests and violent actions. The numerical results are motivating enough for and it can be extended beyond proof of the concept into real time external surveillance and healthcare tagging.


Subject(s)
Internet of Things , Mass Gatherings , Cities , Delivery of Health Care , Humans , Neural Networks, Computer
17.
Front Mol Biosci ; 8: 748014, 2021.
Article in English | MEDLINE | ID: mdl-35083276

ABSTRACT

Introduction: With the advent of direct-acting antiviral (DAA) therapy for HCV, the cure is achieved at similar rates among HIV-HCV coinfected patients as in HCV mono-infected patients. The present study evaluates host plasma metabolites as putative indicators in predicting the treatment response in baseline HIV-HCV patients. Methods: Non-cirrhotic HIV-HCV (N = 43) coinfected patients were treated with sofosbuvir and daclatasvir for 12 weeks. Plasma metabolite profiling of pre- and post-therapy was analyzed in 20/43 patients. Of the 20 selected, 10 (50%) attained the sustained viral response [(SVR) (responders)] as defined by the absence of HCV RNA at 12 weeks after the treatment, and 10 (50%) did not attain the cure for HCV (nonresponders). Results: A total of 563 features were annotated (metabolomic/spectral databases). Before therapy, 39 metabolites differentiated (FC ±1.5, p < 0.05) nonresponders from responders. Of these, 20 upregulated and 19 downregulated were associated with tryptophan metabolism, nicotinamide metabolism, and others. Post therapy, 62 plasma metabolites (12 upregulated and 50 downregulated, FC±1.5, p < 0.05) differentiated nonresponders from responders and highlighted a significant increase in the steroid and histidine metabolism and significant decrease in tryptophan metabolism and ascorbate and pyruvate metabolism in the nonresponders. Based on random forest and multivariate linear regression analysis, the baseline level of N-acetylspermidine (FC > 2, AUC = 0.940, Bfactor = -0.267) and 2-acetolactate (FC > 2, AUC = 0.880, Bfactor = -0.713) significantly differentiated between nonresponders from responders in HIV-HCV coinfected patients and was able to predict the failure of treatment response. Conclusion: Increased baseline levels of N-acetylspermidine and 2-acetolactate levels are associated with the likeliness of failure to attain the cure for HCV in HIV-HCV coinfected patients.

18.
Cell Reprogram ; 23(1): 26-34, 2021 02.
Article in English | MEDLINE | ID: mdl-33147076

ABSTRACT

The establishment of an in vitro culture system for complete oocyte maturation from the early stages of ovarian follicles is still a challenge. The aim of the present study was to assess the effect of different matrix with different culture media on the developmental growth of ovarian follicles in vitro. An ovarian histoarchitectural study was carried out to identify the primordial (0.027-0.039 mm), primary (0.041-0.079 mm), small preantral (0.085-0.131 mm), large preantral (0.132-0.294 mm), small antral (0.387-0.589 mm), and large antral (1.188-1.366 mm) follicles. Thus, large preantral follicles (0.2-0.3 mm) were mechanically isolated and cultured subsequently in different microconditions such as Dulbecco's modified Eagle's medium, Tissue Culture Medium-199 (TCM-199) and Opti-minimum essential medium, with same supplements where control (without matrix) was compared with matrix (coculture and encapsulation), which includes (1) buffalo fetal fibroblast cells, (2) cumulus cells, (3) ovarian mesenchymal cells, (4) collagen, (5) gelatin, and (6) Matrigel, cultured for 7 days in CO2 incubator at 38.5°C (5% CO2 in air). Cultured follicles were evaluated for growth rate (107.88% ± 10.24%), maturation rate (51.06% ± 6.53%), survivability rate (56.52% ± 3.42%), and antioxidant (catalase; CAT [1.58 ± 0.04 U/mg], superoxide dismutase; SOD [4.63 ± 0.05 U/mg], lactate dehydrogenase; LDH [1.48 ± 0.01 U/mg]) enzymatic activities, which showed significantly (p < 0.05) positive results in growth model with media TCM-199 than other studied groups. Furthermore, the development of large preantral follicles augmented significantly (p < 0.05) for growth rate (248.54% ± 9.51%), maturation rate (75.81% ± 7.07%), survivability rate (81.82% ± 3.02%), antioxidant (CAT [2.05 ± 0.03 U/mg], SOD [3.13 ± 0.12 U/mg], LDH [2.55 ± 0.51 U/mg]), and estradiol (175.83 ± 5.92 pg/mL) activities when they were encapsulated in Matrigel with nutritional requirements fulfilled by media TCM-199. These results provide better insight for the optimization of culture conditions for in vitro follicular development in the water buffalo, which will eventually assist in resolving the limitation of obtaining fewer competent oocytes for the embryo production in the species.


Subject(s)
Coculture Techniques/standards , Culture Media/standards , Cumulus Cells/cytology , Embryo, Mammalian/cytology , Embryonic Development , Ovarian Follicle/cytology , Animals , Buffaloes , Cumulus Cells/physiology , Embryo, Mammalian/physiology , Female , Ovarian Follicle/physiology
19.
Bone Marrow Transplant ; 55(7): 1282-1289, 2020 07.
Article in English | MEDLINE | ID: mdl-32231249

ABSTRACT

Atopy is excessive production of IgE in response to allergens. We evaluated in patients undergoing allogeneic hematopoietic cell transplantation (HCT) the following hypotheses: (1) Atopy is "curable" in atopic patients receiving HCT from a nonatopic donor (D-R+), and (2) Atopy is transferable from atopic donors to nonatopic recipients (D+R-). Atopic patients with atopic donors (D+R+) and non-atopic patients with non-atopic donors (D-R-) served as controls. We measured levels of multiallergen-specific IgE (A-IgE, atopy defined as ≥0.35 kUA/L) in sera from 54 patients and their donors pre HCT and from the patients at ≥2 years post HCT. Only 7/12 (58%) D- R+ patients became nonatopic after HCT. Only 1/11 (9%) D+R- patients became atopic. Eleven of 13 (85%) D-R- patients remained nonatopic. Unexpectedly, 11/18 (61%) D+R+ patients became nonatopic. In conclusion, contrary to our hypothesis and previous reports, the "cure" of atopy may occur in only some D-R+ patients and the transfer of atopy may occur rarely. The "cure" may not be necessarily due to the exchange of atopic for nonatopic immune system, as the "cure" may also occur in D+R+ patients.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hypersensitivity, Immediate , Allergens , Humans , Immunoglobulin E
20.
Sensors (Basel) ; 19(19)2019 Sep 28.
Article in English | MEDLINE | ID: mdl-31569337

ABSTRACT

Ultrasound based structural health monitoring of piezoelectric material is challenging if a damage changes at a microscale over time. Classifying geometrically similar damages with a difference in diameter as small as 100 µ m is difficult using conventional sensing and signal analysis approaches. Here, we use an unconventional ultrasound sensing approach that collects information of the entire bulk of the material and investigate the applicability of machine learning approaches for classifying such similar defects. Our results show that appropriate feature design combined with simple k-nearest neighbor classifier can provide up to 98% classification accuracy even though conventional features for time-series data and a variety of classifiers cannot achieve close to 70% accuracy. The newly proposed hybrid feature, which combines frequency domain information in the form of power spectral density and time domain information in the form of sign of slope change, is a suitable feature for achieving the best classification accuracy on this challenging problem.

SELECTION OF CITATIONS
SEARCH DETAIL
...