Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Environ Pathol Toxicol Oncol ; 43(2): 43-55, 2024.
Article in English | MEDLINE | ID: mdl-38505912

ABSTRACT

Gastrointestinal (GI) cancers comprise of cancers that affect the digestive system and its accessory organs. The late detection and poor prognosis of GI cancer emphasizes the importance of identifying reliable and precise biomarkers for early diagnosis and prediction of prognosis. The membrane-bound glycoprotein dipeptidyl-peptidase 4 (DPP4), also known as CD26, is ubiquitously expressed and has a wide spectrum of biological roles. The role of DPP4/CD26 in tumor progression in different types of cancers remains elusive. However, the link between DPP4 and tumor-infiltrating cells, as well as its prognostic significance in malignancies, still require further investigation. This study was intended to elucidate the correlation of DPP4 expression and survival along with prognosis, followed by its associated enriched molecular pathways and immune cell marker levels in upper GI cancers. Results demonstrated a strong correlation between increased DPP4 expression and a worse prognosis in esophageal and gastric cancer and the co-expressed common genes with DPP4 were associated with crucial molecular pathways involved in tumorigenesis. Additionally, DPP4 was shown to be significantly linked to several immune infiltrating cell marker genes, including Macrophages (M1, M2 and Tumor Associated Macrophages), neutrophils, Treg, T-cell exhaustion, Th1 and Th2. Overall, our findings suggest that DPP4 may serve as a substantial prognostic biomarker, a possible therapeutic target, as well as it can play a critical role in the regulation of immune cell invasion in patients with gastroesophageal (esophageal, gastroesophageal junction and gastric) cancer. KEY WORDS: DPP4, integrated analysis, GI cancer, gastroesophageal cancer, gastroesophageal junction, prognosis.


Subject(s)
Esophageal Neoplasms , Stomach Neoplasms , Humans , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Macrophages/metabolism
2.
Nanotheranostics ; 8(2): 247-269, 2024.
Article in English | MEDLINE | ID: mdl-38444741

ABSTRACT

The post-pandemic era following the global spread of the SARS-CoV-2 virus has brought about persistent concerns regarding recurring coinfections. While significant strides in genome mapping, diagnostics, and vaccine development have controlled the pandemic and reduced fatalities, ongoing virus mutations necessitate a deeper exploration of the interplay between SARS-CoV-2 mutations and the host's immune response. Various vaccines, including RNA-based ones like Pfizer and Moderna, viral vector vaccines like Johnson & Johnson and AstraZeneca, and protein subunit vaccines like Novavax, have played critical roles in mitigating the impact of COVID-19. Understanding their strengths and limitations is crucial for tailoring future vaccines to specific variants and individual needs. The intricate relationship between SARS-CoV-2 mutations and the immune response remains a focus of intense research, providing insights into personalized treatment strategies and long-term effects like long-COVID. This article offers an overview of the post-pandemic landscape, highlighting emerging variants, summarizing vaccine platforms, and delving into immunological responses and the phenomenon of long-COVID. By presenting clinical findings, it aims to contribute to the ongoing understanding of COVID-19's progression in the aftermath of the pandemic.


Subject(s)
COVID-19 , Coinfection , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Pandemics , Protein Subunit Vaccines
3.
Int J Mol Sci ; 25(4)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38396946

ABSTRACT

Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are gradually becoming a burden to society. The adverse effects and mortality/morbidity rates associated with these NDDs are a cause of many healthcare concerns. The pathologic alterations of NDDs are related to mitochondrial dysfunction, oxidative stress, and inflammation, which further stimulate the progression of NDDs. Recently, long non-coding RNAs (lncRNAs) have attracted ample attention as critical mediators in the pathology of NDDs. However, there is a significant gap in understanding the biological function, molecular mechanisms, and potential importance of lncRNAs in NDDs. This review documents the current research on lncRNAs and their implications in NDDs. We further summarize the potential implication of lncRNAs to serve as novel therapeutic targets and biomarkers for patients with NDDs.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Parkinson Disease , RNA, Long Noncoding , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , RNA, Long Noncoding/genetics , Parkinson Disease/genetics , Amyotrophic Lateral Sclerosis/genetics
4.
J Biomol Struct Dyn ; 42(5): 2570-2585, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37116195

ABSTRACT

Malaria is among the top-ranked parasitic diseases that pose a threat to the existence of the human race. This study evaluated the antimalarial effect of the rhizome of Zingiber officinale in infected mice, performed secondary metabolite profiling and detailed computational antimalarial evaluation through molecular docking, molecular dynamics (MD) simulation and density functional theory methods. The antimalarial potential of Z. officinale was performed using the in vivo chemosuppressive model; secondary metabolite profiling was carried out using liquid chromatography-mass spectrometry (LC-MS). Molecular docking was performed with Autodock Vina while the MD simulation was performed with Schrodinger desmond suite for 100 ns and DFT calculations with B3LYP (6-31G) basis set. The extract showed 64% parasitaemia suppression, with a dose-dependent increase in activity up to 200 mg/kg. The chemical profiling of the extract tentatively identified eight phytochemicals. The molecular docking studies with plasmepsin II and Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) identified gingerenone A as the hit molecule, and MMGBSA values corroborate the binding energies obtained. The electronic parameters of gingerenone A revealed its significant antimalarial potential. The antimalarial activity elicited by the extract of Z. officinale and the bioactive chemical constituent supports its usage in ethnomedicine.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antimalarials , Diarylheptanoids , Folic Acid Antagonists , Zingiber officinale , Humans , Animals , Mice , Antimalarials/chemistry , Molecular Docking Simulation , Liquid Chromatography-Mass Spectrometry , Chromatography, Liquid , Tandem Mass Spectrometry , Folic Acid Antagonists/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plasmodium falciparum
5.
Life Sci Alliance ; 6(12)2023 12.
Article in English | MEDLINE | ID: mdl-37793774

ABSTRACT

Anchorage-independent survival after intravasation of cancer cells from the primary tumor site represents a critical step in metastasis. Here, we reveal new insights into how MUC13-mediated anoikis resistance, coupled with survival of colorectal tumor cells, leads to distant metastasis. We found that MUC13 targets a potent transcriptional coactivator, YAP1, and drives its nuclear translocation via forming a novel survival complex, which in turn augments the levels of pro-survival and metastasis-associated genes. High expression of MUC13 is correlated well with extensive macrometastasis of colon cancer cells with elevated nuclear YAP1 in physiologically relevant whole animal model systems. Interestingly, a positive correlation of MUC13 and YAP1 expression was observed in human colorectal cancer tissues. In brief, the results presented here broaden the significance of MCU13 in cancer metastasis via targeting YAP1 for the first time and provide new avenues for developing novel strategies for targeting cancer metastasis.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Animals , Humans , Colorectal Neoplasms/metabolism , Transcription Factors/genetics , Mucins/metabolism
6.
Front Oncol ; 13: 1154586, 2023.
Article in English | MEDLINE | ID: mdl-37007088
7.
Commun Biol ; 5(1): 1181, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333531

ABSTRACT

There is increasing evidence suggesting the role of microbiome alterations in relation to pancreatic adenocarcinoma and tumor immune functionality. However, molecular mechanisms of the interplay between microbiome signatures and/or their metabolites in pancreatic tumor immunosurveillance are not well understood. We have identified that a probiotic strain (Lactobacillus casei) derived siderophore (ferrichrome) efficiently reprograms tumor-associated macrophages (TAMs) and increases CD8 + T cell infiltration into tumors that paralleled a marked reduction in tumor burden in a syngeneic mouse model of pancreatic cancer. Interestingly, this altered immune response improved anti-PD-L1 therapy that suggests promise of a novel combination (ferrichrome and immune checkpoint inhibitors) therapy for pancreatic cancer treatment. Mechanistically, ferrichrome induced TAMs polarization via activation of the TLR4 pathway that represses the expression of iron export protein ferroportin (FPN1) in macrophages. This study describes a novel probiotic based molecular mechanism that can effectively induce anti-tumor immunosurveillance and improve immune checkpoint inhibitors therapy response in pancreatic cancer.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Probiotics , Mice , Animals , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/metabolism , Adenocarcinoma/metabolism , Siderophores , Tumor Microenvironment , Ferrichrome/therapeutic use , Monitoring, Immunologic , Immune Checkpoint Inhibitors , Probiotics/pharmacology , Pancreatic Neoplasms
8.
Vaccines (Basel) ; 10(7)2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35891236

ABSTRACT

Background: The whole of humanity has suffered dire consequences related to the novel coronavirus disease 2019 (COVID-19). Vaccination of the world base population is considered the most promising and challenging approach to achieving herd immunity. As healthcare organizations took on the extensive task of vaccinating the entire U.S. population, digital health companies expanded their automated health platforms in order to help ease the administrative burdens of mass inoculation. Although some software companies offer free applications to large organizations, there are prohibitive costs for small clinics such as the Good Health Associates Clinic (GHAC) for integrating and implementing new self-scheduling software into our e-Clinical Works (ECW) Electronic Health Record (EHR). These cost burdens resulted in a search that extended beyond existing technology, and in investing in new solutions to make it easier, more efficient, more cost-effective, and more scalable. Objective: In comparison to commercial entities, primary care clinics (PCCs) have the advantage of engaging the population for vaccination through personalized continuity of clinical care due to good rapport between their patients and the PCC team. In order to support the overall national campaign to prevent COVID-19 infections and restore public health, the GHAC wanted to make COVID-19 vaccination accessible to its patients and to the communities it serves. We aimed to achieve a coordinated COVID-19 vaccination drive in our community through our small primary care clinic by developing and using an easily implementable, cost-effective self-registration and scheduling web-based mobile platform, using the principle of "C.D.S. Five Rights". Results: Overall, the Moderna vaccination drive using our developed self-registration and scheduling web portal and SMS messaging mobile platform improved vaccination uptake (51%) compared to overall vaccination uptake in our town, county (36%), and state (39%) during April-July 2021. Conclusions: Based on our experience during this COVID-19 vaccination drive, we conclude that PCCs have significant leverage as "invaluable warriors", along with government and media education available, to engage patients for vaccination uptake; this leads to national preventive health spread in our population, and reduces expenses related to acute illness and hospitalization. In terms of cost-effectiveness, small PCCs are worthy of government-sponsored funding and incentives, including mandating EHR vendors to provide free (or minimal fee) software for patient self-registration and scheduling, in order to improve vaccination drive access. Hence, improved access to personalized informative continuity of clinical care in the PCC setting is a "critical link" in accelerating similar cost-effective campaigns in patient vaccine uptake.

9.
Biomedicines ; 9(12)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34944630

ABSTRACT

Pancreatic cancer has the worst prognosis and lowest survival rate among all cancers. Pancreatic cancer cells are highly metabolically active and typically reprogrammed for aberrant glucose metabolism; thus they respond poorly to therapeutic modalities. It is highly imperative to understand mechanisms that are responsible for high glucose metabolism and identify natural/synthetic agents that can repress glucose metabolic machinery in pancreatic cancer cells, to improve the therapeutic outcomes/management of pancreatic cancer patients. We have identified a glycoside, steviol that effectively represses glucose consumption in pancreatic cancer cells via the inhibition of the translation initiation machinery of the molecular components. Herein, we report that steviol effectively inhibits the glucose uptake and lactate production in pancreatic cancer cells (AsPC1 and HPAF-II). The growth, colonization, and invasion characteristics of pancreatic cancer cells were also determined by in vitro functional assay. Steviol treatment also inhibited the tumorigenic and metastatic potential of human pancreatic cancer cells by inducing apoptosis and cell cycle arrest in the G1/M phase. The metabolic shift by steviol was mediated through the repression of the phosphorylation of mTOR and translation initiation proteins (4E-BP1, eIF4e, eIF4B, and eIF4G). Overall, the results of this study suggest that steviol can effectively suppress the glucose metabolism and translation initiation in pancreatic cancer cells to mitigate their aggressiveness. This study might help in the design of newer combination therapeutic strategies for pancreatic cancer treatment.

10.
Biomedicines ; 9(10)2021 Oct 03.
Article in English | MEDLINE | ID: mdl-34680499

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has disrupted social and economic life globally. The global pandemic COVID-19 caused by this novel SARS-CoV-2 shows variable clinical manifestations, complicated further by cytokine storm, co-infections, and coagulopathy, leading to severe cases and death. Thrombotic complications arise due to complex and unique interplay between coronaviruses and host cells, inflammatory response, and the coagulation system. Heparin and derivatives are World Health Organization (WHO) recommended anticoagulants for moderate and severe Corona Virus Disease 19 (COVID-19), that can also inhibit viral adhesion to the cell membrane by interfering with heparan sulfate-dependent binding to angiotensin-converting enzyme 2 (ACE2) receptor. Heparin also possesses anti-inflammatory, immunomodulatory, antiviral, and anti-complement activity, which offers a benefit in limiting viral and microbial infectivity and anticoagulation from the immune-thrombosis system. Here we present a case study of the pathophysiology of unexpected COVID-19 coagulopathy of an obese African American patient. While being on therapeutic warfarin since admission, he had a dismal outcome due to cardio-pulmonary arrest after the sudden rise in D-dimer value from 1.1 to >20. This indicates that for such patients on chronic warfarin anticoagulation with "moderate COVID 19 syndromes", warfarin anticoagulation may not be suitable compared to heparin and its derivatives. Further research should be done to understand the beneficial role of heparin and its derivatives compared to warfarin for COVID-19 inflicted patients.

11.
Int J Mol Sci ; 22(10)2021 May 17.
Article in English | MEDLINE | ID: mdl-34067896

ABSTRACT

Exosomes are nanoscale vesicles generated by cells for intercellular communication. Due to their composition, significant research has been conducted to transform these particles into specific delivery systems for various disease states. In this review, we discuss the common isolation and loading methods of exosomes, some of the major roles of exosomes in the tumor microenvironment, as well as discuss recent applications of exosomes as drug delivery vessels and the resulting clinical implications.


Subject(s)
Drug Delivery Systems/methods , Exosomes/metabolism , Neoplasms/therapy , Exosomes/pathology , Exosomes/physiology , Humans , Neoplasms/metabolism , Neoplasms/pathology , Tumor Microenvironment/drug effects , Tumor Microenvironment/physiology
12.
Biomed J Sci Tech Res ; 37(3): 29427-29431, 2021 Jul.
Article in English | MEDLINE | ID: mdl-35071996

ABSTRACT

The well-defined and characterized 3D crystal structure of a protein is important to explore the topological and physiological features of the protein. The distinguished topography of a protein helps medical chemists design drugs on the basis of the pharmacophoric features of the protein. Structure-based drug discovery, specifically for pathological proteins that cause a higher risk of disease, takes advantage of this fact. Current tools for studying drug-protein interactions include physical, chromatographic, and electrophoretic methods. These techniques can be separated into either non-spectroscopic (equilibrium dialysis, ultrafiltration, ultracentrifugation, etc.) or spectroscopic (Fluorescence spectroscopy, NMR, X-ray diffraction, etc.) methods. These methods, however, can be time-consuming and expensive. On the other hand, in silico methods of analyzing protein-drug interactions, such as docking, molecular simulations, and High-Throughput Virtual Screenings (HTVS), are heavily underutilized by core drug discovery laboratories. These kinds of approaches have a great potential for the mass screening of potential small drugs molecules. Studying protein-drug interactions is of particular importance for understanding how the structural conformation of protein elements affect overall ligand binding affinity. By taking a bioinformatics approach to analyzing drug-protein interactions, the speed with which we identify potential drugs for genetic targets can be greatly increased.

14.
ACS Appl Mater Interfaces ; 11(42): 38537-38554, 2019 Oct 23.
Article in English | MEDLINE | ID: mdl-31553876

ABSTRACT

Cellular senescence is one of the prevailing issues in cancer therapeutics that promotes cancer relapse, chemoresistance, and recurrence. Patients undergoing persistent chemotherapy often develop drug-induced senescence. Docetaxel, an FDA-approved treatment for prostate cancer, is known to induce cellular senescence which often limits the overall survival of patients. Strategic therapies that counter the cellular and drug-induced senescence are an unmet clinical need. Towards this an effort was made to develop a novel therapeutic strategy that targets and removes senescent cells from the tumors, we developed a nanoformulation of tannic acid-docetaxel self-assemblies (DSAs). The construction of DSAs was confirmed through particle size measurements, spectroscopy, thermal, and biocompatibility studies. This formulation exhibited enhanced in vitro therapeutic activity in various biological functional assays with respect to native docetaxel treatments. Microarray and immunoblot analysis results demonstrated that DSAs exposure selectively deregulated senescence associated TGFßR1/FOXO1/p21 signaling. Decrease in ß-galactosidase staining further suggested reversion of drug-induced senescence after DSAs exposure. Additionally, DSAs induced profound cell death by activation of apoptotic signaling through bypassing senescence. Furthermore, in vivo and ex vivo imaging analysis demonstrated the tumor targeting behavior of DSAs in mice bearing PC-3 xenograft tumors. The antisenescence and anticancer activity of DSAs was further shown in vivo by inhibiting TGFßR1 proteins and regressing tumor growth through apoptotic induction in the PC-3 xenograft mouse model. Overall, DSAs exhibited such advanced features due to a natural compound in the formulation as a matrix/binder for docetaxel. Overall, DSAs showed superior tumor targeting and improved cellular internalization, promoting docetaxel efficacy. These findings may have great implications in prostate cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Cellular Senescence/drug effects , Docetaxel/chemistry , Nanostructures/chemistry , Polyphenols/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Docetaxel/pharmacology , Docetaxel/therapeutic use , Forkhead Box Protein O1/metabolism , Humans , Male , Mice , Mice, Nude , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Receptor, Transforming Growth Factor-beta Type I/metabolism , Signal Transduction/drug effects , Tannins/chemistry , Transplantation, Heterologous
15.
J Colloid Interface Sci ; 535: 133-148, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30292104

ABSTRACT

Paclitaxel (PTX) is a gold standard chemotherapeutic agent for breast, ovarian, pancreatic and non-small cell lung carcinoma. However, in clinical use PTX can have adverse side effects or inadequate pharmacodynamic parameters, limiting its use. Nanotechnology is often employed to reduce the therapeutic dosage required for effective therapy, while also minimizing the systemic side effects of chemotherapy drugs. However, there is no nanoformulation of paclitaxel with chemosensitization motifs built in. With this objective, we screened eleven pharmaceutical excipients to develop an alternative paclitaxel nanoformulation using a self-assembly method. Based on the screening results, we observed tannic acid possesses unique properties to produce a paclitaxel nanoparticle formulation, i.e., tannic acid-paclitaxel nanoparticles. This stable TAP nanoformulation, referred to as TAP nanoparticles (TAP NPs), showed a spherical shape of ~ 102 nm and negative zeta potential of ~ -8.85. The presence of PTX in TAP NPs was confirmed by Fourier Transform Infrared (FTIR) spectra, thermogravimetric analyzer (TGA), and X-ray diffraction (XRD). Encapsulation efficiency of PTX in TAP NPs was determined to be ≥96%. Intracellular drug uptake of plain drug PTX on breast cancer cells (MDA-MB-231) shows more or less constant drug levels in 2 to 6 h, suggesting drug efflux by the P-gp transporters, over TAP NPs, in which PTX uptake was more than 95.52 ±â€¯11.01% in 6 h, as analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Various biological assays such as proliferation, clonogenic formation, invasion, and migration confirm superior anticancer effects of TAP NPs over plain PTX at all tested concentrations. P-gp expression, beta-tubulin stabilization, Western blot, and microarray analysis further confirm the improved therapeutic potential of TAP NPs. These results suggest that the TAP nanoformulation provides an important reference for developing a therapeutic nanoformulation affording pronounced, enhanced effects in breast cancer therapy.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/drug therapy , Nanoparticles/chemistry , Paclitaxel/pharmacology , Tannins/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Movement/drug effects , Cell Proliferation/drug effects , Chromatography, Liquid , Drug Screening Assays, Antitumor , Female , Humans , MCF-7 Cells , Paclitaxel/chemistry , Particle Size , Surface Properties , Tandem Mass Spectrometry , Tumor Cells, Cultured
16.
Bioorg Chem ; 82: 211-223, 2019 02.
Article in English | MEDLINE | ID: mdl-30326403

ABSTRACT

Based on the quantitative structure-activity relationship (QSAR), some novel p-aminobenzoic acid derivatives as promising cholinesterase enzyme inhibitors were designed, synthesized, characterized and evaluated to enhance learning and memory. The in vitro enzyme kinetic study of the synthesized compounds revealed the type of inhibition on the respective acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. The in vivo studies of the synthesized compounds exhibited significant reversal of cognitive deficits in the animal models of amnesia as compared to standard drug donepezil. Further, the ex vivo studies in the specific brain regions like the hippocampus, hypothalamus, and prefrontal cortex regions also exhibited AChE inhibition comparable to standard donepezil. The in silico molecular docking and dynamics simulations studies of the most potent compound 22 revealed the consensual interactions at the active site pocket of the AChE.


Subject(s)
Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/therapeutic use , Nootropic Agents/therapeutic use , para-Aminobenzoates/therapeutic use , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Animals , Brain/metabolism , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Catalytic Domain , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/toxicity , Drug Design , Female , Kinetics , Male , Memory/drug effects , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Nootropic Agents/chemical synthesis , Nootropic Agents/chemistry , Nootropic Agents/toxicity , Quantitative Structure-Activity Relationship , Rats , Semicarbazones/chemical synthesis , Semicarbazones/chemistry , Semicarbazones/therapeutic use , Semicarbazones/toxicity , para-Aminobenzoates/chemical synthesis , para-Aminobenzoates/chemistry , para-Aminobenzoates/toxicity
17.
Noncoding RNA ; 4(3)2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30189670

ABSTRACT

Formalin-fixed paraffin embedded (FFPE) tissues are a valuable resource for biomarker discovery in order to understand the etiology of different cancers and many other diseases. Proteins are the biomarkers of interest with respect to FFPE tissues as RNA degradation is the major challenge in these tissue samples. Recently, non-protein coding transcripts, long non-coding RNAs (lncRNAs), have gained significant attention due to their important biological actions and potential involvement in cancer. RNA sequencing (RNA-seq) or quantitative reverse transcription-polymerase chain reaction (qRT-PCR) are the only validated methods to evaluate and study lncRNA expression and neither of them provides visual representation as immunohistochemistry (IHC) provides for proteins. We have standardized and are reporting a sensitive Z probe based in situ hybridization method to visually identify and quantify lncRNA in FFPE tissues. This assay is highly sensitive and identifies transcripts visible within different cell types and tumors. We have detected a scarcely expressed tumor suppressor lncRNA NRON (non-coding repressor of nuclear factor of activated T-cells (NFAT)), a moderately expressed oncogenic lncRNA UCA1 (urothelial cancer associated 1), and a highly studied and expressed lncRNA MALAT1 (metastasis associated lung adenocarcinoma transcript 1) in different cancers. High MALAT1 staining was found in colorectal, breast and pancreatic cancer. Additionally, we have observed an increase in MALAT1 expression in different stages of colorectal cancer.

18.
Drug Discov Today ; 23(9): 1635-1643, 2018 09.
Article in English | MEDLINE | ID: mdl-29698834

ABSTRACT

Long noncoding RNAs (lncRNAs) are a class of noncoding RNA, involved in regulation of diverse physiological and pathological processes. Ovarian cancer is the leading cause of death among all gynecological malignancies in the world and its underlying mechanism is still unclear. LncRNAs exhibit multiple biological functions in various stages of ovarian cancer development. We will discuss and summarize the new and important lncRNAs and their involvement in disease, which might represent promising therapeutic targets. Therapeutic intervention based on silencing or functional inhibition of target lncRNAs will be beneficial for ovarian cancer patients.


Subject(s)
Biomarkers, Tumor/genetics , Ovarian Neoplasms/genetics , RNA, Long Noncoding/genetics , Animals , Biomarkers, Tumor/metabolism , Female , Gene Expression Regulation, Neoplastic , Gene Silencing , Genetic Therapy/methods , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/therapy , RNA, Long Noncoding/metabolism , Signal Transduction
19.
Br J Cancer ; 118(4): 587-599, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29465084

ABSTRACT

BACKGROUND: Cancer progression and metastasis is profoundly influenced by protein kinase D1 (PKD1) and metastasis-associated protein 1 (MTA1) in addition to other pathways. However, the nature of regulatory relationship between the PKD1 and MTA1, and its resulting impact on cancer metastasis remains unknown. Here we present evidence to establish that PKD1 is an upstream regulatory kinase of MTA1. METHODS: Protein and mRNA expression of MTA1 in PKD1-overexpressing cells were determined using western blotting and reverse-transcription quantitative real-time PCR. Immunoprecipitation and proximity ligation assay (PLA) were used to determine the interaction between PKD1 and MTA1. PKD1-mediated nucleo-cytoplasmic export and polyubiquitin-dependent proteosomal degradation was determined using immunostaining. The correlation between PKD1 and MTA1 was determined using intra-tibial, subcutaneous xenograft, PTEN-knockout (PTEN-KO) and transgenic adenocarcinoma of mouse prostate (TRAMP) mouse models, as well as human cancer tissues. RESULTS: We found that MTA1 is a PKD1-interacting substrate, and that PKD1 phosphorylates MTA1, supports its nucleus-to-cytoplasmic redistribution and utilises its N-terminal and kinase domains to effectively inhibit the levels of MTA1 via polyubiquitin-dependent proteosomal degradation. PKD1-mediated downregulation of MTA1 was accompanied by a significant suppression of prostate cancer progression and metastasis in physiologically relevant spontaneous tumour models. Accordingly, progression of human prostate tumours to increased invasiveness was also accompanied by decreased and increased levels of PKD1 and MTA1, respectively. CONCLUSIONS: Overall, this study, for the first time, establishes that PKD1 is an upstream regulatory kinase of MTA1 status and its associated metastatic activity, and that the PKD1-MTA1 axis could be targeted for anti-cancer strategies.


Subject(s)
Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Prostatic Neoplasms/pathology , Repressor Proteins/genetics , Repressor Proteins/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Animals , Cell Line, Tumor , Cell Nucleus/metabolism , Cytoplasm/metabolism , Gene Knockout Techniques , Humans , MCF-7 Cells , Male , Mice , Neoplasm Metastasis , Neoplasm Transplantation , PTEN Phosphohydrolase/genetics , Phosphorylation , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Trans-Activators
20.
Mol Cancer Ther ; 16(10): 2267-2280, 2017 10.
Article in English | MEDLINE | ID: mdl-28615299

ABSTRACT

Ormeloxifene is a clinically approved selective estrogen receptor modulator, which has also shown excellent anticancer activity, thus it can be an ideal repurposing pharmacophore. Herein, we report therapeutic effects of ormeloxifene on prostate cancer and elucidate a novel molecular mechanism of its anticancer activity. Ormeloxifene treatment inhibited epithelial-to-mesenchymal transition (EMT) process as evident by repression of N-cadherin, Slug, Snail, vimentin, MMPs (MMP2 and MMP3), ß-catenin/TCF-4 transcriptional activity, and induced the expression of pGSK3ß. In molecular docking analysis, ormeloxifene showed proficient docking with ß-catenin and GSK3ß. In addition, ormeloxifene induced apoptosis, inhibited growth and metastatic potential of prostate cancer cells and arrested cell cycle in G0-G1 phase via modulation of cell-cycle regulatory proteins (inhibition of Mcl-1, cyclin D1, and CDK4 and induction of p21 and p27). In functional assays, ormeloxifene remarkably reduced tumorigenic, migratory, and invasive potential of prostate cancer cells. In addition, ormeloxifene treatment significantly (P < 0.01) regressed the prostate tumor growth in the xenograft mouse model while administered through intraperitoneal route (250 µg/mouse, three times a week). These molecular effects of ormeloxifene were also observed in excised tumor tissues as shown by immunohistochemistry analysis. Our results, for the first time, demonstrate repurposing potential of ormeloxifene as an anticancer drug for the treatment of advanced stage metastatic prostate cancer through a novel molecular mechanism involving ß-catenin and EMT pathway. Mol Cancer Ther; 16(10); 2267-80. ©2017 AACR.


Subject(s)
Benzopyrans/administration & dosage , Cell Proliferation/drug effects , Prostatic Neoplasms/drug therapy , beta Catenin/genetics , Animals , Apoptosis/drug effects , Benzopyrans/adverse effects , Cell Line, Tumor , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/drug effects , Humans , Male , Mice , Molecular Docking Simulation , Neoplasm Metastasis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , beta Catenin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...