Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
NPJ Parkinsons Dis ; 10(1): 103, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762512

ABSTRACT

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. Primary symptoms of PD arise with the loss of dopaminergic (DA) neurons in the Substantia Nigra Pars Compacta, but PD also affects the hippocampus and cortex, usually in its later stage. Approximately 15% of PD cases are familial with a genetic mutation. Two of the most associated genes with autosomal recessive (AR) early-onset familial PD are PINK1 and PRKN. In vitro studies of these genetic mutations are needed to understand the neurophysiological changes in patients' neurons that may contribute to neurodegeneration. In this work, we generated and differentiated DA and hippocampal neurons from human induced pluripotent stem cells (hiPSCs) derived from two patients with a double mutation in their PINK1 and PRKN (one homozygous and one heterozygous) genes and assessed their neurophysiology compared to two healthy controls. We showed that the synaptic activity of PD neurons generated from patients with the PINK1 and PRKN mutations is impaired in the hippocampus and dopaminergic neurons. Mutant dopaminergic neurons had enhanced excitatory post-synaptic activity. In addition, DA neurons with the homozygous mutation of PINK1 exhibited more pronounced electrophysiological differences compared to the control neurons. Signaling network analysis of RNA sequencing results revealed that Focal adhesion and ECM receptor pathway were the top two upregulated pathways in the mutant PD neurons. Our findings reveal that the phenotypes linked to PINK1 and PRKN mutations differ from those from other PD mutations, suggesting a unique interplay between these two mutations that drives different PD mechanisms.

2.
Mol Psychiatry ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704507

ABSTRACT

Schizophrenia affects approximately 1% of the world population. Genetics, epigenetics, and environmental factors are known to play a role in this psychiatric disorder. While there is a high concordance in monozygotic twins, about half of twin pairs are discordant for schizophrenia. To address the question of how and when concordance in monozygotic twins occur, we have obtained fibroblasts from two pairs of schizophrenia discordant twins (one sibling with schizophrenia while the second one is unaffected by schizophrenia) and three pairs of healthy twins (both of the siblings are healthy). We have prepared iPSC models for these 3 groups of patients with schizophrenia, unaffected co-twins, and the healthy twins. When the study started the co-twins were considered healthy and unaffected but both the co-twins were later diagnosed with a depressive disorder. The reprogrammed iPSCs were differentiated into hippocampal neurons to measure the neurophysiological abnormalities in the patients. We found that the neurons derived from the schizophrenia patients were less arborized, were hypoexcitable with immature spike features, and exhibited a significant reduction in synaptic activity with dysregulation in synapse-related genes. Interestingly, the neurons derived from the co-twin siblings who did not have schizophrenia formed another distinct group that was different from the neurons in the group of the affected twin siblings but also different from the neurons in the group of the control twins. Importantly, their synaptic activity was not affected. Our measurements that were obtained from schizophrenia patients and their monozygotic twin and compared also to control healthy twins point to hippocampal synaptic deficits as a central mechanism in schizophrenia.

3.
Endocr Rev ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38500373

ABSTRACT

Multiple changes occur in hormonal regulation with aging and across various endocrine organs. These changes are associated with multiple age-related disorders and diseases. A better understanding of responsible underling biological mechanisms could help in the management of multiple endocrine disorders over and above hormone replacement therapy (HRT). Cellular senescence is involved in multiple biological aging processes and pathologies common in elderly individuals. Cellular senescence, which occurs in many older individuals but also across the lifespan in association with tissue damage, acute and chronic diseases, certain drugs, and genetic syndromes, may contribute to such endocrine disorders as osteoporosis, metabolic syndrome, and type II diabetes mellitus (T2DM). Drugs that selectively induce senescent cell removal, "senolytics", and drugs that attenuate the tissue-destructive secretory state of certain senescent cells, "senomorphics", appear to delay the onset or alleviate multiple diseases, including but not limited to endocrine disorders such as diabetes, complications of obesity, age-related osteoporosis, and cancers as well as atherosclerosis, chronic kidney disease, neurodegenerative disorders, and many others. Over thirty clinical trials of senolytic and senomorphic agents have already been completed, are underway, or are planned for a variety of indications. Targeting senescent cells is a novel strategy that is distinct from conventional therapies such as HRT, and thus might address unmet medical needs and can potentially amplify effects of established endocrine drug regimens, perhaps allowing for dose decreases and reducing side effects.

5.
NPJ Parkinsons Dis ; 10(1): 38, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374278

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease with both genetic and sporadic origins. In this study, we investigated the electrophysiological properties, synaptic activity, and gene expression differences in dopaminergic (DA) neurons derived from induced pluripotent stem cells (iPSCs) of healthy controls, sporadic PD (sPD) patients, and PD patients with E326K-GBA1 mutations. Our results demonstrate reduced sodium currents and synaptic activity in DA neurons derived from PD patients with E326K-GBA1 mutations, suggesting a potential contribution to PD pathophysiology. We also observed distinct electrophysiological alterations in sPD DA neurons, which included a decrease in synaptic currents. RNA sequencing analysis revealed unique dysregulated pathways in sPD neurons and E326K-GBA1 neurons, further supporting the notion that molecular mechanisms driving PD may differ between PD patients. In agreement with our previous reports, Extracellular matrix and Focal adhesion pathways were among the top dysregulated pathways in DA neurons from sPD patients and from patients with E326K-GBA1 mutations. Overall, our study further confirms that impaired synaptic activity is a convergent functional phenotype in DA neurons derived from PD patients across multiple genetic mutations as well as sPD. At the transcriptome level, we find that the brain extracellular matrix is highly involved in PD pathology across multiple PD-associated mutations as well as sPD.

6.
Am J Transplant ; 24(3): 391-405, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37913871

ABSTRACT

In clinical organ transplantation, donor and recipient ages may differ substantially. Old donor organs accumulate senescent cells that have the capacity to induce senescence in naïve cells. We hypothesized that the engraftment of old organs may induce senescence in younger recipients, promoting age-related pathologies. When performing isogeneic cardiac transplants between age-mismatched C57BL/6 old donor (18 months) mice and young and middle-aged C57BL/6 (3- or 12- month-old) recipients , we observed augmented frequencies of senescent cells in draining lymph nodes, adipose tissue, livers, and hindlimb muscles 30 days after transplantation. These observations went along with compromised physical performance and impaired spatial learning and memory abilities. Systemic levels of the senescence-associated secretory phenotype factors, including mitochondrial DNA (mt-DNA), were elevated in recipients. Of mechanistic relevance, injections of mt-DNA phenocopied effects of age-mismatched organ transplantation on accelerating aging. Single treatment of old donor animals with senolytics prior to transplantation attenuated mt-DNA release and improved physical capacities in young recipients. Collectively, we show that transplanting older organs induces senescence in transplant recipients, resulting in compromised physical and cognitive capacities. Depleting senescent cells with senolytics, in turn, represents a promising approach to improve outcomes of older organs.


Subject(s)
Cellular Senescence , Organ Transplantation , Animals , Mice , Senotherapeutics , Mice, Inbred C57BL , Organ Transplantation/adverse effects , DNA/pharmacology , Aging/physiology
7.
Transl Psychiatry ; 13(1): 246, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37414777

ABSTRACT

Autism Spectrum Disorder (ASD) is characterized mainly by social and sensory-motor abnormal and repetitive behavior patterns. Over hundreds of genes and thousands of genetic variants were reported to be highly penetrant and causative of ASD. Many of these mutations cause comorbidities such as epilepsy and intellectual disabilities (ID). In this study, we measured cortical neurons derived from induced pluripotent stem cells (iPSCs) of patients with four mutations in the genes GRIN2B, SHANK3, UBTF, as well as chromosomal duplication in the 7q11.23 region and compared them to neurons derived from a first-degree relative without the mutation. Using a whole-cell patch-clamp, we observed that the mutant cortical neurons demonstrated hyperexcitability and early maturation compared to control lines. These changes were characterized by increased sodium currents, increased amplitude and rate of excitatory postsynaptic currents (EPSCs), and more evoked action potentials in response to current stimulation in early-stage cell development (3-5 weeks post differentiation). These changes that appeared in all the different mutant lines, together with previously reported data, indicate that an early maturation and hyperexcitability may be a convergent phenotype of ASD cortical neurons.


Subject(s)
Autism Spectrum Disorder , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/metabolism , Neurons/metabolism , Mutation , Cell Differentiation/physiology , Phenotype
8.
Int J Biometeorol ; 67(2): 311-320, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36400976

ABSTRACT

Although seasonal variations in semen quality and fertility have been studied to a considerable extent in breeding bulls, the effect of climatic variables on sperm functional competency has not been understood in detail. The present study analyzed sperm functional parameters in breeding bulls, over a period of 1 year, and assessed the effect of climatic variables on fertility associated sperm parameters. Seasons were categorized into summer, rainy, autumn, and winter based on the meteorological data. Semen was collected from crossbred bulls (n = 7) across the seasons and evaluated for functional membrane integrity, acrosome reaction status, protamine deficiency, capacitation, and lipid peroxidation status using specific fluorescent probes. The results of the present study revealed that bulls produced higher (p < 0.05) viable and acrosome intact spermatozoa during the autumn. The proportion of uncapacitated spermatozoa was also higher (p < 0.05) during autumn. Further, correlation of sperm functional attributes with environmental variables revealed that sperm viability was significantly (p < 0.05) and negatively correlated with daylength and temperature; acrosomal integrity was significantly (p < 0.05) and negatively correlated with day length; and protamine deficiency had significant (p < 0.05) positive correlation with day length and average temperature, and negative correlation with relative humidity. It was concluded that semen produced during autumn was superior to the semen produced during other seasons in terms of sperm functional competencies required for fertility.


Subject(s)
Semen Analysis , Semen , Cattle , Animals , Male , Seasons , Phenomics , Sperm Motility , Spermatozoa , Fertility
9.
Bipolar Disord ; 25(2): 110-127, 2023 03.
Article in English | MEDLINE | ID: mdl-36479788

ABSTRACT

AIM: Bipolar disorder (BD) is a mood disorder with a high morbidity and death rate. Lithium (Li), a prominent mood stabilizer, is often used as a first-line treatment. However, clinical studies have shown that Li is fully effective in roughly 30% of BD patients. Our goal in this study was to use features derived from information theory to improve the prediction of the patient's response to Li as well as develop a diagnostic algorithm for the disorder. METHODS: We have performed electrophysiological recordings in patient-derived dentate gyrus (DG) granule neurons (from a total of 9 subjects) for three groups: 3 control individuals, 3 BD patients who respond to Li treatment (LR), and 3 BD patients who do not respond to Li treatment (NR). The recordings were analyzed by the statistical tools of modern information theory. We used a Support Vector Machine (SVM) and Random forest (RF) classifiers with the basic electrophysiological features with additional information theory features. RESULTS: Information theory features provided further knowledge about the distribution of the electrophysiological entities and the interactions between the different features, which improved classification schemes. These newly added features significantly improved our ability to distinguish the BD patients from the control individuals (an improvement from 60% to 74% accuracy) and LR from NR patients (an improvement from 81% to 99% accuracy). CONCLUSION: The addition of Information theory-derived features provides further knowledge about the distribution of the parameters and their interactions, thus significantly improving the ability to discriminate and predict the LRs from the NRs and the patients from the controls.


Subject(s)
Bipolar Disorder , Lithium , Humans , Lithium/therapeutic use , Bipolar Disorder/diagnosis , Support Vector Machine , Lithium Compounds/therapeutic use , Information Theory
10.
EBioMedicine ; 77: 103912, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35292270

ABSTRACT

BACKGROUND: α-Klotho is a geroprotective protein that can attenuate or alleviate deleterious changes with ageing and disease. Declines in α-Klotho play a role in the pathophysiology of multiple diseases and age-related phenotypes. Pre-clinical evidence suggests that boosting α-Klotho holds therapeutic potential. However, readily clinically-translatable, practical strategies for increasing α-Klotho are not at hand. Here, we report that orally-active, clinically-translatable senolytics can increase α-Klotho in mice and humans. METHODS: We examined α-Klotho expression in three different human primary cell types co-cultured with conditioned medium (CM) from senescent or non-senescent cells with or without neutralizing antibodies. We assessed α-Klotho expression in aged, obese, and senescent cell-transplanted mice treated with vehicle or senolytics. We assayed urinary α-Klotho in patients with idiopathic pulmonary fibrosis (IPF) who were treated with the senolytic drug combination, Dasatinib plus Quercetin (D+Q). FINDINGS: We found exposure to the senescent cell secretome reduces α-Klotho in multiple nonsenescent human cell types. This was partially prevented by neutralizing antibodies against the senescence-associated secretory phenotype (SASP) factors, activin A and Interleukin 1α (IL-1α). Consistent with senescent cells' being a cause of decreased α-Klotho, transplanting senescent cells into younger mice reduced brain and urine α-Klotho. Selectively removing senescent cells genetically or pharmacologically increased α-Klotho in urine, kidney, and brain of mice with increased senescent cell burden, including naturally-aged, diet-induced obese (DIO), or senescent cell-transplanted mice. D+Q increased α-Klotho in urine of patients with IPF, a disease linked to cellular senescence. INTERPRETATION: Senescent cells cause reduced α-Klotho, partially due to their production of activin A and IL-1α. Targeting senescent cells boosts α-Klotho in mice and humans. Thus, clearing senescent cells restores α-Klotho, potentially opening a novel, translationally-feasible avenue for developing orally-active small molecule, α-Klotho-enhancing clinical interventions. Furthermore, urinary α-Klotho may prove to be a useful test for following treatments in senolytic clinical trials. FUNDING: This work was supported by National Institute of Health grants AG013925 (J.L.K.), AG062413 (J.L.K., S.K.), AG044271 (N.M.), AG013319 (N.M.), and the Translational Geroscience Network (AG061456: J.L.K., T.T., N.M., S.B.K., S.K.), Robert and Arlene Kogod (J.L.K.), the Connor Group (J.L.K.), Robert J. and Theresa W. Ryan (J.L.K.), and the Noaber Foundation (J.L.K.). The previous IPF clinical trial was supported by the Claude D. Pepper Older Americans Independence Centers at WFSM (AG021332: J.N.J., S.B.K.), UTHSCA (AG044271: A.M.N.), and the Translational Geroscience Network.


Subject(s)
Aging , Senotherapeutics , Aged , Animals , Brain , Cellular Senescence , Humans , Mice , Quercetin/pharmacology
12.
Aging (Albany NY) ; 13(18): 21838-21854, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34531331

ABSTRACT

Senescent cells, which arise due to damage-associated signals, are apoptosis-resistant and can express a pro-inflammatory, tissue-destructive senescence-associated secretory phenotype (SASP). We recently reported that a component of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surface protein, S1, can amplify the SASP of senescent cultured human cells and that a related mouse ß-coronavirus, mouse hepatitis virus (MHV), increases SASP factors and senescent cell burden in infected mice. Here, we show that SARS-CoV-2 induces senescence in human non-senescent cells and exacerbates the SASP in human senescent cells through Toll-like receptor-3 (TLR-3). TLR-3, which senses viral RNA, was increased in human senescent compared to non-senescent cells. Notably, genetically or pharmacologically inhibiting TLR-3 prevented senescence induction and SASP amplification by SARS-CoV-2 or Spike pseudotyped virus. While an artificial TLR-3 agonist alone was not sufficient to induce senescence, it amplified the SASP in senescent human cells. Consistent with these findings, lung p16INK4a+ senescent cell burden was higher in patients who died from acute SARS-CoV-2 infection than other causes. Our results suggest that induction of cellular senescence and SASP amplification through TLR-3 contribute to SARS-CoV-2 morbidity, indicating that clinical trials of senolytics and/or SASP/TLR-3 inhibitors for alleviating acute and long-term SARS-CoV-2 sequelae are warranted.


Subject(s)
COVID-19/virology , Cellular Senescence , SARS-CoV-2/pathogenicity , Toll-Like Receptor 3/metabolism , Aging , Animals , Apoptosis , COVID-19/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Humans , Inflammation , Lung/metabolism , Mice , Phenotype , Viral Proteins , COVID-19 Drug Treatment
13.
Mech Ageing Dev ; 198: 111548, 2021 09.
Article in English | MEDLINE | ID: mdl-34352325

ABSTRACT

Cellular senescence, first observed and defined through cell culture studies, is a cell fate associated with essentially permanent cell cycle arrest and that can be triggered by a variety of inducers. Emerging evidence suggests senescence is a dynamic process with diverse functional characteristics. Depending on the tissue, type of inducer, and time since induction, senescent cells can promote tissue repair and re-modeling, prevent tumor development, or contribute to age-related disorders and chronic diseases, including cancers. Senescent cell characteristics appear to depend on multiple factors and be influenced by the milieu and other senescent cells locally and at a distance. We review diverse phenotypes of senescent cells originating from different cell types, senescence inducers over time since induction of senescence, and across conditions and diseases. This background is essential to inform further understanding about senescent cell subtypes and will point towards rational senescence-modulating strategies for achieving therapeutic benefit.


Subject(s)
Aging/physiology , Cell Cycle/physiology , Cellular Senescence/physiology , Senescence-Associated Secretory Phenotype/physiology , Cells/classification , Chronic Disease , Humans , Regeneration
14.
Science ; 373(6552)2021 07 16.
Article in English | MEDLINE | ID: mdl-34103349

ABSTRACT

The COVID-19 pandemic has revealed the pronounced vulnerability of the elderly and chronically ill to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced morbidity and mortality. Cellular senescence contributes to inflammation, multiple chronic diseases, and age-related dysfunction, but effects on responses to viral infection are unclear. Here, we demonstrate that senescent cells (SnCs) become hyper-inflammatory in response to pathogen-associated molecular patterns (PAMPs), including SARS-CoV-2 spike protein-1, increasing expression of viral entry proteins and reducing antiviral gene expression in non-SnCs through a paracrine mechanism. Old mice acutely infected with pathogens that included a SARS-CoV-2-related mouse ß-coronavirus experienced increased senescence and inflammation, with nearly 100% mortality. Targeting SnCs by using senolytic drugs before or after pathogen exposure significantly reduced mortality, cellular senescence, and inflammatory markers and increased antiviral antibodies. Thus, reducing the SnC burden in diseased or aged individuals should enhance resilience and reduce mortality after viral infection, including that of SARS-CoV-2.


Subject(s)
Aging , Cellular Senescence/drug effects , Coronavirus Infections/mortality , Flavonols/therapeutic use , Pathogen-Associated Molecular Pattern Molecules/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Animals , COVID-19/immunology , COVID-19/mortality , Cell Line , Coronavirus Infections/immunology , Dasatinib/pharmacology , Dasatinib/therapeutic use , Female , Flavonols/pharmacology , Gene Expression Regulation , Humans , Lipopolysaccharides , Male , Mice , Mice, Inbred C57BL , Murine hepatitis virus/immunology , Quercetin/pharmacology , Quercetin/therapeutic use , Receptors, Coronavirus/genetics , Receptors, Coronavirus/metabolism , Specific Pathogen-Free Organisms , COVID-19 Drug Treatment
15.
Mitochondrion ; 58: 83-94, 2021 05.
Article in English | MEDLINE | ID: mdl-33610756

ABSTRACT

Novel therapeutic strategies for Alzheimer's disease (AD) are of the greatest priority given the consistent failure of recent clinical trials focused on Aß or pTau. Earlier, we demonstrated that mild mitochondrial complex I inhibitor CP2 blocks neurodegeneration and cognitive decline in multiple mouse models of AD. To evaluate the safety of CP2 in humans, we performed a genome-wide association study (GWAS) using 196 lymphoblastoid cell lines and identified 11 SNP loci and 64 mRNA expression probe sets that potentially associate with CP2 susceptibility. Using primary mouse neurons and pharmacokinetic study, we show that CP2 is generally safe at a therapeutic dose.


Subject(s)
Electron Transport Complex I/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Genome-Wide Association Study , Lymphocytes/metabolism , Mitochondria/enzymology , Animals , Electron Transport Complex I/metabolism , Female , Humans , Lymphocytes/cytology , Male , Mice , Polymorphism, Single Nucleotide
16.
Commun Biol ; 4(1): 61, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420340

ABSTRACT

Alzheimer's Disease (AD) is a devastating neurodegenerative disorder without a cure. Here we show that mitochondrial respiratory chain complex I is an important small molecule druggable target in AD. Partial inhibition of complex I triggers the AMP-activated protein kinase-dependent signaling network leading to neuroprotection in symptomatic APP/PS1 female mice, a translational model of AD. Treatment of symptomatic APP/PS1 mice with complex I inhibitor improved energy homeostasis, synaptic activity, long-term potentiation, dendritic spine maturation, cognitive function and proteostasis, and reduced oxidative stress and inflammation in brain and periphery, ultimately blocking the ongoing neurodegeneration. Therapeutic efficacy in vivo was monitored using translational biomarkers FDG-PET, 31P NMR, and metabolomics. Cross-validation of the mouse and the human transcriptomic data from the NIH Accelerating Medicines Partnership-AD database demonstrated that pathways improved by the treatment in APP/PS1 mice, including the immune system response and neurotransmission, represent mechanisms essential for therapeutic efficacy in AD patients.


Subject(s)
Alzheimer Disease/drug therapy , Brain/drug effects , Cognition/drug effects , Electron Transport Complex I/antagonists & inhibitors , Pyrones/therapeutic use , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Brain/ultrastructure , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Mice, Inbred C57BL , Mice, Transgenic , Neuroprotection , Proof of Concept Study , Pyrones/pharmacology , Signal Transduction/drug effects
17.
Int Rev Neurobiol ; 155: 203-234, 2020.
Article in English | MEDLINE | ID: mdl-32854855

ABSTRACT

Aging is the major predictor for developing multiple neurodegenerative diseases, including Alzheimer's disease (AD) other dementias, and Parkinson's disease (PD). Senescent cells, which can drive aging phenotypes, accumulate at etiological sites of many age-related chronic diseases. These cells are resistant to apoptosis and can cause local and systemic dysfunction. Decreasing senescent cell abundance using senolytic drugs, agents that selectively target these cells, alleviates neurodegenerative diseases in preclinical models. In this review, we consider roles of senescent cells in neurodegenerative diseases and potential implications of senolytic agents as an innovative treatment.


Subject(s)
Aging/pathology , Aging/physiology , Cellular Senescence , Neurodegenerative Diseases/pathology , Animals , Cellular Senescence/drug effects , Humans , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/physiopathology
18.
Cell Rep ; 25(6): 1425-1435.e7, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30403999

ABSTRACT

The mitochondrial calcium uniporter is a highly selective ion channel composed of species- and tissue-specific subunits. However, the functional role of each component still remains unclear. Here, we establish a synthetic biology approach to dissect the interdependence between the pore-forming subunit MCU and the calcium-sensing regulator MICU1. Correlated evolutionary patterns across 247 eukaryotes indicate that their co-occurrence may have conferred a positive fitness advantage. We find that, while the heterologous reconstitution of MCU and EMRE in vivo in yeast enhances manganese stress, this is prevented by co-expression of MICU1. Accordingly, MICU1 deletion sensitizes human cells to manganese-dependent cell death by disinhibiting MCU-mediated manganese uptake. As a result, manganese overload increases oxidative stress, which can be effectively prevented by NAC treatment. Our study identifies a critical contribution of MICU1 to the uniporter selectivity, with important implications for patients with MICU1 deficiency, as well as neurological disorders arising upon chronic manganese exposure.


Subject(s)
Calcium Channels/metabolism , Calcium-Binding Proteins/metabolism , Cation Transport Proteins/metabolism , Cytoprotection , Manganese/toxicity , Mitochondrial Membrane Transport Proteins/metabolism , Apoptosis/drug effects , Cytoprotection/drug effects , Eukaryota , Evolution, Molecular , HEK293 Cells , HeLa Cells , Humans , Iron/toxicity , Mitochondria/metabolism , Phylogeny , Saccharomyces cerevisiae/metabolism , Stress, Physiological/drug effects
19.
Int J Biometeorol ; 62(9): 1709-1719, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29881903

ABSTRACT

Seasonality in reproduction and effects of climatic variables on testicular cytology and semen quality in bucks reared under subtropical climatic conditions were not well understood. In the present study, using testicular cytology, semen evaluation and melatonin concentrations assessed over a period of 1 year, we report that bucks reared under subtropical climatic conditions did not show seasonality in reproduction. Climatic variables including temperature, relative humidity, temperature-humidity index (THI), sunshine hours and day length were recorded daily during the whole period of experimentation (one complete year). Ejaculates were collected from crossbred (Alpine X Beetal) males (n = 6) biweekly using artificial vagina, and semen quality (volume, mass activity, sperm concentration, motility, viability, membrane integrity and protamine deficiency) was assessed. To understand the seasonal influence at testicular level, using fine needle aspiration biopsy method, testicular cells were aspirated and different types of cells and testicular cytology indices were quantified. Blood was collected biweekly for estimation of melatonin concentrations. Mass activity was higher (P < 0.05) during rainy season while individual sperm motility and sperm concentration were higher (P < 0.05) during rainy and autumn seasons as compared to other seasons. Sperm functional parameters did not show any differences during different seasons. Sertoli cell count, spermatogenic cell count and testicular indices did not differ among the seasons. Melatonin concentrations also did not differ significantly among the four seasons studied. Among the climatic parameters, THI had significant (P < 0.05) influence on sperm quality. The proportion of Sertoli cell in the testicular cytology had a significant and positive relationship with RH, THI and day length. It was concluded that seasonal variations are less evident in terms of spermatogenesis and semen quality in Alpine X Beetal crossbred bucks reared under subtropical climatic conditions.


Subject(s)
Climate , Goats/physiology , Melatonin/blood , Semen Analysis/veterinary , Testis/cytology , Animals , Hybridization, Genetic , Male , Reproduction , Seasons , Sperm Count
20.
Neurobiol Dis ; 114: 1-16, 2018 06.
Article in English | MEDLINE | ID: mdl-29477640

ABSTRACT

Inhibition of mitochondrial axonal trafficking by amyloid beta (Aß) peptides has been implicated in early pathophysiology of Alzheimer's Disease (AD). Yet, it remains unclear whether the loss of motility inevitably induces the loss of mitochondrial function, and whether restoration of axonal trafficking represents a valid therapeutic target. Moreover, while some investigations identify Aß oligomers as the culprit of trafficking inhibition, others propose that fibrils play the detrimental role. We have examined the effect of a panel of Aß peptides with different mutations found in familial AD on mitochondrial motility in primary cortical mouse neurons. Peptides with higher propensity to aggregate inhibit mitochondrial trafficking to a greater extent with fibrils inducing the strongest inhibition. Binding of Aß peptides to the plasma membrane was sufficient to induce trafficking inhibition where peptides with reduced plasma membrane binding and internalization had lesser effect on mitochondrial motility. We also found that Aß peptide with Icelandic mutation A673T affects axonal trafficking of mitochondria but has very low rates of plasma membrane binding and internalization in neurons, which could explain its relatively low toxicity. Inhibition of mitochondrial dynamics caused by Aß peptides or fibrils did not instantly affect mitochondrial bioenergetic and function. Our results support a mechanism where inhibition of axonal trafficking is initiated at the plasma membrane by soluble low molecular weight Aß species and is exacerbated by fibrils. Since trafficking inhibition does not coincide with the loss of mitochondrial function, restoration of axonal transport could be beneficial at early stages of AD progression. However, strategies designed to block Aß aggregation or fibril formation alone without ensuring the efficient clearance of soluble Aß may not be sufficient to alleviate the trafficking phenotype.


Subject(s)
Amyloid beta-Peptides/metabolism , Axons/metabolism , Cell Membrane/metabolism , Mitochondria/metabolism , Protein Aggregates/physiology , Amino Acid Sequence , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/pharmacology , Animals , Axons/drug effects , Axons/pathology , Cell Membrane/drug effects , Cell Membrane/pathology , Cells, Cultured , Female , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/drug effects , Mitochondria/pathology , Pregnancy , Protein Aggregates/drug effects , Protein Binding/drug effects , Protein Binding/physiology , Protein Transport/drug effects , Protein Transport/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...