Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Sci Rep ; 12(1): 21259, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36481774

ABSTRACT

In contrast to traditional laboratory glucose monitoring, recent developments have focused on blood glucose self-monitoring and providing patients with a self-monitoring device. This paper proposes a system based on ultrasound principles for quantifying glucose levels in blood by conducting an in-vitro experiment with goat blood before human blood. The ultrasonic transceiver is powered by a frequency generator that operates at 40 kHz and 1.6 V, and variations in glucose level affect the ultrasonic transceiver readings. The RVM probabilistic model is used to determine the variation in glucose levels in a blood sample. Blood glucose levels are measured simultaneously using a commercial glucose metre for confirmation. The experimental data values proposed are highly correlated with commercial glucose metre readings. The proposed ultrasonic MEMS-based blood glucometer measures a glucose level of [Formula: see text] mg/dl. In the near future, the miniature version of the experimental model may be useful to human society.


Subject(s)
Blood Glucose Self-Monitoring , Blood Glucose , Humans , Models, Statistical
2.
Materials (Basel) ; 15(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35207929

ABSTRACT

The synthesis of a high value-added product, gahnite ferroan nano composite, from a mixture of fly ash silica and ZnO is a low-cost and non-expensive technique. The XRD pattern clearly reveals the synthesized product from fly ash after leaching is a product of high-purity gahnite ferroan composite. The grains are mostly cubical in shape. The optical band gap of powdered gahnite ferroan nano composite is 3.37 eV, which acts as a UV protector. However, the bulk sample shows that the 500 to 700 nm wavelength of visible light is absorbed, and UV light is allowed to pass through. So, the bulk sample acts as a band pass filter of UV light which can be used in many optical applications for conducting UV-irradiation activity. Dielectric permittivity and dielectric loss increase with a rise in temperature. The increase in the ac conductivity at higher temperatures denotes the negative temperature coefficient resistance (NTCR) behavior of the material.

3.
Materials (Basel) ; 14(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34832400

ABSTRACT

"Wear a mask. Save lives" is the slogan of WHO and all the government agencies over the world to the public. One of the most adopted prevention measures that can limit the spread of the airborne virus in the form of respiratory viral diseases, including the new strain of COVID-19, is wearing a proper mask. If the mask surface is heated to 65 to 70 °C, it could help potentially diminish any viruses or bacteria accumulated. The FAR-Ultraviolet -C (FAR-UV-C) dose for the influenza limit to 254 nm light is ~3 mJ/cm2/hour exposure is not harmful to the human skin and eyes. Here, we propose an intelligent mask served by FAR-UV-C and conducting a yarn-based heater that could potentially be activated in a controlled manner to kill the virus. The effective irradiation intensity for skin application would be under 0.1 µW/cm2. The exposure risk of UV-C is technically prevented by fabricating multi-layered fabrics with multiple functionalities. Along with experimental validation on bacterial filtration efficiency (BFE), tinker cad simulation for circuit design, and comsol multiphysics for temperature profile study, we probed Moisture Management Test (MMT) in addition with cytotoxicity risk by MTT Assay for survivability to ensure safer application potential. This novel proposed design with the germicidal combination of heating and FAR-UV-C models, described here, is promising in retaliating and combating any airborne viruses.

SELECTION OF CITATIONS
SEARCH DETAIL