Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(5): e26416, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38468957

ABSTRACT

The emergence of federated learning (FL) technique in fog-enabled healthcare system has leveraged enhanced privacy towards safeguarding sensitive patient information over heterogeneous computing platforms. In this paper, we introduce the FedHealthFog framework, which was meticulously developed to overcome the difficulties of distributed learning in resource-constrained IoT-enabled healthcare systems, particularly those sensitive to delays and energy efficiency. Conventional federated learning approaches face challenges stemming from substantial compute requirements and significant communication costs. This is primarily due to their reliance on a singular server for the aggregation of global data, which results in inefficient training models. We present a transformational approach to address these problems by elevating strategically placed fog nodes to the position of local aggregators within the federated learning architecture. A sophisticated greedy heuristic technique is used to optimize the choice of a fog node as the global aggregator in each communication cycle between edge devices and the cloud. The FedHealthFog system notably accounts for drop in communication latency of 87.01%, 26.90%, and 71.74%, and energy consumption of 57.98%, 34.36%, and 35.37% respectively, for three benchmark algorithms analyzed in this study. The effectiveness of FedHealthFog is strongly supported by outcomes of our experiments compared to cutting-edge alternatives while simultaneously reducing number of global aggregation cycles. These findings highlight FedHealthFog's potential to transform federated learning in resource-constrained IoT environments for delay-sensitive applications.

2.
Diagnostics (Basel) ; 13(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37891987

ABSTRACT

In contemporary healthcare, the prediction and identification of cardiac diseases is crucial. By leveraging the capabilities of Internet of Things (IoT)-enabled devices and Electronic Health Records (EHRs), the healthcare sector can largely benefit to improve patient outcomes by increasing the accuracy of disease prediction. However, protecting data privacy is essential to promote participation and adhere to rules. The suggested methodology combines EHRs with IoT-generated health data to predict heart disease. For its capacity to manage high-dimensional data and choose pertinent features, a soft-margin L1-regularised Support Vector Machine (sSVM) classifier is used. The large-scale sSVM problem is successfully solved using the cluster primal-dual splitting algorithm, which improves computational complexity and scalability. The integration of federated learning provides a cooperative predictive analytics methodology that upholds data privacy. The use of a federated learning framework in this study, with a focus on peer-to-peer applications, is crucial for enabling collaborative predictive modeling while protecting the confidentiality of each participant's private medical information.

SELECTION OF CITATIONS
SEARCH DETAIL