Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 6419, 2024 03 17.
Article in English | MEDLINE | ID: mdl-38494537

ABSTRACT

Extracellular vesicles (EVs) have crucial roles in hemostasis and coagulation. They sustain coagulation by exposing phosphatidylserine and initiate clotting by surface expression of tissue factor (TF) under inflammatory conditions. As their relevance as biomarkers of coagulopathy is increasingly recognized, there is a need for the sensitive and reliable detection of TF+ EVs, but their flow cytometric analysis is challenging and has yielded controversial findings for TF expression on EVs in the vascular system. We investigated the effect of different fluorochrome-to-protein (F/P) ratios of anti-TF-fluorochrome conjugates on the flow cytometric detection of TF+ EVs from activated monocytes, mesenchymal stem cells (MSCs), and in COVID-19 plasma. Using a FITC-labeled anti-TF antibody (clone VD8), we show that the percentage of TF+ EVs declined with decreasing F/P ratios. TF was detected on 7.6%, 5.4%, and 1.1% of all EVs derived from activated monocytes at F/P ratios of 7.7:1, 6.6:1, and 5.2:1. A similar decline was observed for EVs from MSCs and for EVs in plasma, whereas the detection of TF on cells remained unaffected by different F/P ratios. We provide clear evidence that next to the antibody clone, the F/P ratio affects the flow cytometric detection of TF+ EVs and should be carefully controlled.


Subject(s)
Extracellular Vesicles , Thromboplastin , Thromboplastin/metabolism , Fluorescent Dyes/metabolism , Blood Coagulation , Extracellular Vesicles/metabolism
2.
Membranes (Basel) ; 12(9)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36135891

ABSTRACT

Extracellular vesicles (EVs) are in the scientific spotlight due to their potential application in the medical field, ranging from medical diagnosis to therapy. These applications rely on EV stability during isolation and purification-ideally, these steps should not impact vesicle integrity. In this context, we investigated EV stability and particle numbers via nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA) and nanoparticle tracking analysis (NTA). In nES GEMMA, native, surface-dry analytes are separated in the gas-phase according to the particle size. Besides information on size and particle heterogeneity, particle number concentrations are obtained in accordance with recommendations of the European Commission for nanoparticle characterization (2011/696/EU, 18 October 2011). Likewise, and in contrast to NTA, nES GEMMA enables detection of co-purified proteins. On the other hand, NTA, yielding data on hydrodynamic size distributions, is able to relate particle concentrations, omitting electrolyte exchange (and resulting EV loss), which is prerequisite for nES GEMMA. Focusing on EVs of different origin, we compared vesicles concentrations and stability, especially after electrolyte exchange and size exclusion chromatography (SEC). Co-isolated proteins were detected in most samples, and the vesicle amount varied in dependence on the EV source. We found that depletion of co-purified proteins was achievable via SEC, but was associated with a loss of EVs and-most importantly-with decreased vesicle stability, as detected via a reduced nES GEMMA measurement repeatability. Ultimately, we propose the repeatability of nES GEMMA to yield information on EV stability, and, as a result, we propose that nES GEMMA can yield additional valuable information in EV research.

3.
Anal Bioanal Chem ; 413(30): 7341-7352, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34622320

ABSTRACT

The emerging role of extracellular vesicles (EVs) as biomarkers and their envisioned therapeutic use require advanced techniques for their detailed characterization. In this context, we investigated gas-phase electrophoresis on a nano electrospray gas-phase electrophoretic mobility molecular analyzer (nES GEMMA, aka nES differential mobility analyzer, nES DMA) as an alternative to standard analytical techniques. In gas-phase electrophoresis, single-charged, surface-dry, native, polydisperse, and aerosolized analytes, e.g., proteins or bio-nanoparticles, are separated according to their electrophoretic mobility diameter, i.e., globular size. Subsequently, monodisperse particles are counted after a nucleation step in a supersaturated atmosphere as they pass a focused laser beam. Hence, particle number concentrations are obtained in accordance with recommendations of the European Commission for nanoparticle characterization (2011/696/EU from October 18th, 2011). Smaller sample constituents (e.g., co-purified proteins) can be detected next to larger ones (e.g., vesicles). Focusing on platelet-derived EVs, we compared different vesicle isolation techniques. In all cases, nanoparticle tracking analysis (NTA) confirmed the presence of vesicles. However, nES GEMMA often revealed a significant co-purification of proteins from the sample matrix, precluding gas-phase electrophoresis of less-diluted samples containing higher vesicle concentrations. Therefore, mainly peaks in the protein size range were detected. Mass spectrometry revealed that these main contaminants belonged to the group of globulins and coagulation-related components. An additional size exclusion chromatography (SEC) step enabled the depletion of co-purified, proteinaceous matrix components, while a label-free quantitative proteomics approach revealed no significant differences in the detected EV core proteome. Hence, the future in-depth analysis of EVs via gas-phase electrophoresis appears feasible. Platelet-derived extracellular vesicles (EVs)with/without additional size exclusion chromatographic (SEC) purification were subjected to nanoparticle tracking analysis (NTA) and gas-phase electrophoresis (nES GEMMA). The latter revealed presence of co-purified proteins, targetable via mass spectrometry (MS). MS also revealed that SEC did not influence EV protein content. To conclude, nES GEMMA is a valuable tool for quality control of EV-containing samples under native conditions allowing for detection of co-purified proteins from complex matrices.


Subject(s)
Electrophoretic Mobility Shift Assay/methods , Extracellular Vesicles/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Gases , Humans , Spectrometry, Mass, Electrospray Ionization/instrumentation
4.
Mediators Inflamm ; 2021: 8395048, 2021.
Article in English | MEDLINE | ID: mdl-33790693

ABSTRACT

The timely recognition of sepsis and the prediction of its clinical course are challenging due to the complex molecular mechanisms leading to organ failure and to the heterogeneity of sepsis patients. Treatment strategies relying on a "one-fits-all" approach have failed to reduce mortality, suggesting that therapeutic targets differ between patient subgroups and highlighting the need for accurate analysis of the molecular cascades to assess the highly variable host response. Here, we characterized a panel of 44 inflammatory mediators, including cytokines, chemokines, damage-associated molecular patterns, and coagulation-related factors, as well as markers of endothelial activation in 30 patients suffering from renal failure in the course of sepsis. All patients received continuous veno-venous hemodialysis with either high cut-off filters or with standard filters, and mediators were quantified for all patients at the initiation of dialysis and after 24 h and 48 h. Mediator concentrations in individual patients ranged widely, demonstrating the heterogeneity of sepsis patients. None of the mediators correlated with SAPS III or TISS scores. The overall in-hospital mortality of the study population was 56.7% (57.1% vs. 56.3% for high cut-off vs. standard filter). The two filter groups differed regarding most of the mediator levels at baseline, prohibiting conclusions regarding the effect of standard filters versus high cut-off filters on mediator depletion. The elevation and correlation of damage-associated molecular patterns and markers of endothelial activation gave evidence of severe tissue damage. In particular, extracellular histones were strongly increased and were almost 30-fold higher in nonsurvivors as compared to survivors, indicating their diagnostic and prognostic potential.


Subject(s)
Histones , Sepsis , Alarmins , Humans , Prognosis , Renal Dialysis
5.
Int J Mol Sci ; 22(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917210

ABSTRACT

Growing interest in extracellular vesicles (EVs) has prompted the advancements of protocols for improved EV characterization. As a high-throughput, multi-parameter, and single particle technique, flow cytometry is widely used for EV characterization. The comparison of data on EV concentration, however, is hindered by the lack of standardization between different protocols and instruments. Here, we quantified EV counts of platelet-derived EVs, using two flow cytometers (Gallios and CytoFLEX LX) and nanoparticle tracking analysis (NTA). Phosphatidylserine-exposing EVs were identified by labelling with lactadherin (LA). Calibration with silica-based fluorescent beads showed detection limits of 300 nm and 150 nm for Gallios and CytoFLEX LX, respectively. Accordingly, CytoFLEX LX yielded 40-fold higher EV counts and 13-fold higher counts of LA+CD41+ EVs compared to Gallios. NTA in fluorescence mode (F-NTA) demonstrated that only 9.5% of all vesicles detected in scatter mode exposed phosphatidylserine, resulting in good agreement of LA+ EVs for CytoFLEX LX and F-NTA. Since certain functional characteristics, such as the exposure of pro-coagulant phosphatidylserine, are not equally displayed across the entire EV size range, our study highlights the necessity of indicating the size range of EVs detected with a given approach along with the EV concentration to support the comparability between different studies.


Subject(s)
Blood Platelets/metabolism , Extracellular Vesicles/metabolism , Flow Cytometry , Nanoparticles , Biomarkers , Flow Cytometry/methods , Fluorescence , Fluorescent Dyes , Spectroscopy, Fourier Transform Infrared
6.
Front Cell Dev Biol ; 8: 298, 2020.
Article in English | MEDLINE | ID: mdl-32478066

ABSTRACT

As transmitters of biological information, extracellular vesicles (EVs) are crucial for the maintenance of physiological homeostasis, but also contribute to pathological conditions, such as thrombotic disorders. The ability of EVs to support thrombin generation has been linked to their exposure of phosphatidylserine, an anionic phospholipid that is normally restricted to the inner leaflet of the plasma membrane but exposed on the outer leaflet during EV biogenesis. Here, we investigated whether EVs of different cellular origin and from different settings, namely platelets and red blood cells from blood bank units and a monocyte-like cell line (THP-1), differ regarding their potential to support factor XII-dependent thrombin generation. EVs were isolated from blood products or THP-1 cell culture supernatants using differential centrifugation and characterized by a combination of flow cytometry, nanoparticle tracking analysis, and Western blotting. Soluble factors co-enriched during the isolation of EVs were depleted from blood-cell derived EV fractions using size exclusion chromatography, while proteins bound to the surface of EVs were degraded by mild protease treatment. We found that platelet-derived and red blood cell-derived EVs supported factor XII-dependent thrombin generation to comparable extents, while monocytic EVs failed to support thrombin generation when added to EV-depleted human plasma. We excluded a major contribution of co-enriched soluble proteins or of proteins bound to the EV surface to the thrombogenicity of blood cell-derived EVs. Our data suggest that the enhanced potential of blood cell-derived EVs to support thrombin generation is rather due to enhanced exposure of phosphatidylserine on the surface of blood cell-derived EVs. Extending these investigations to EVs from other cell types, such as mesenchymal stromal cells, will be crucial for their future therapeutic applications.

7.
J Pharm Biomed Anal ; 179: 112998, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31780280

ABSTRACT

Gas-phase electrophoresis of single-charged analytes (nanoparticles) enables their separation according to the surface-dry particle size (Electrophoretic Mobility Diameter, EMD), which corresponds to the diameter of spherical shaped particles. Employing a nano Electrospray Differential Mobility Analyzer (nES DMA), also known as nES Gas-phase Electrophoretic Mobility Molecular Analyzer (nES GEMMA), allows sizing/size-separation and determination of particle-number concentrations. Separations are based on a constant high laminar sheath flow and a tunable, orthogonal electric field enabling scanning of EMDs in the nanometer size range. Additionally, keeping the voltage constant, only nanoparticles of a given EMD pass the instrument and can be collected on corresponding supporting materials for subsequent nanoparticle analyses applying e.g. microscopic, immunologic or spectroscopic techniques. In our proof-of-concept study we now focus for the first time on mass spectrometric (MS) characterization of DMA size-selected material. We carried out size-selection of liposomes, vesicles consisting of a lipid bilayer and an aqueous lumen employed as carriers in e.g. pharmaceutic, cosmetic or nutritional applications. Particles of 85 nm EMD were collected on gold-coated silicon wafers. Subsequently, matrix was applied and Matrix-Assisted Laser Desorption / Ionization (MALDI) MS carried out. However, we not only focused on plain liposomes but also demonstrated the applicability of our approach for very heterogeneous low density lipoprotein (VLDL) particles, a transporter of lipid metabolism. Our novel offline hyphenation of gas-phase electrophoresis (termed nES DMA or nES GEMMA) and MALDI-MS opens the avenue to the molecular characterization of size-select nanoparticles of complex nature.


Subject(s)
Ion Mobility Spectrometry/methods , Lipoproteins, VLDL/analysis , Liposomes/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Electrophoresis/methods , Nanoparticles , Particle Size
8.
Article in English | MEDLINE | ID: mdl-31709251

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) display a variety of therapeutically relevant effects, such as the induction of angiogenesis, particularly under hypoxic conditions. It is generally recognized that MSCs exert their effects by secretion of paracrine factors and by stimulation of host cells. Furthermore, there is increasing evidence that some therapeutically relevant effects of MSCs are mediated by MSC-derived extracellular vesicles (EVs). Since our current knowledge on MSC-derived EVs released under hypoxic conditions is very limited, we aimed to characterize MSC-derived EVs from normoxic vs. hypoxic conditions (5% O2). Adipose-derived MSCs were grown under normoxic and hypoxic conditions, and EVs were analyzed by flow cytometry using lactadherin as a marker for EVs exposing phosphatidylserine, CD63 and CD81 as EV markers, as well as CD73 and CD90 as MSC surface markers. Particle concentration and size distribution were measured by nanoparticle tracking analysis (NTA), and the EV surface antigen signature was characterized using bead-based multiplex flow cytometry. Furthermore, we evaluated the potential of MSC-derived EVs obtained under hypoxic conditions to support angiogenesis using an in vitro assay with an hTERT-immortalized human umbilical vein endothelial cell (HUVEC) line. Proliferation and viability of MSCs were increased under hypoxic conditions. EV concentration, size, and surface signature did not differ significantly between normoxic and hypoxic conditions, with the exception of CD44, which was significantly upregulated on normoxic EVs. EVs from hypoxic conditions exhibited increased tube formation as compared to normoxic EVs or to the corresponding supernatants from both groups, indicating that tube formation is facilitated by EVs rather than by soluble factors. In conclusion, hypoxia conditioned MSC-derived EVs appear to be functionally more potent than normoxic MSC-derived EVs regarding the induction of angiogenesis.

9.
Bioengineering (Basel) ; 5(2)2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29921755

ABSTRACT

Mesenchymal stem cells (MSCs) are considered as primary candidates for cell-based therapies due to their multiple effects in regenerative medicine. Pre-conditioning of MSCs under physiological conditions—such as hypoxia, three-dimensional environments, and dynamic cultivation—prior to transplantation proved to optimize their therapeutic efficiency. When cultivated as three-dimensional aggregates or spheroids, MSCs display increased angiogenic, anti-inflammatory, and immunomodulatory effects as well as improved stemness and survival rates after transplantation, and cultivation under dynamic conditions can increase their viability, proliferation, and paracrine effects, alike. Only few studies reported to date, however, have utilized dynamic conditions for three-dimensional aggregate cultivation of MSCs. Still, the integration of dynamic bioreactor systems, such as spinner flasks or stirred tank reactors might pave the way for a robust, scalable bulk expansion of MSC aggregates or MSC-derived extracellular vesicles. This review summarizes recent insights into the therapeutic potential of MSC aggregate cultivation and focuses on dynamic generation and cultivation techniques of MSC aggregates.

10.
Front Immunol ; 9: 2797, 2018.
Article in English | MEDLINE | ID: mdl-30619243

ABSTRACT

Secretion and exchange of biomolecules by extracellular vesicles (EVs) are crucial in intercellular communication and enable cells to adapt to alterations in their microenvironment. EVs are involved in a variety of cellular processes under physiological conditions as well as in pathological settings. In particular, they exert profound effects on the innate immune system, and thereby are also capable of modulating adaptive immunity. The mechanisms underlying their interaction with their recipient cells, particularly their preferential association with monocytes and granulocytes in the circulation, however, remain to be further clarified. Surface molecules exposed on EVs are likely to mediate immune recognition and EV uptake by their recipient cells. Here, we investigated the involvement of Tyro3, Axl, and Mer (TAM) tyrosine kinase receptors and of integrin CD11b in the binding of platelet-derived EVs, constituting the large majority of circulating EVs, to immune cells in the circulation. Flow cytometry and Western Blotting demonstrated a differential expression of TAM receptors and CD11b on monocytes, granulocytes, and lymphocytes, as well as on monocyte subsets. Of the TAM receptors, only Axl and Mer were detected at low levels on monocytes and granulocytes, but not on lymphocytes. Likewise, CD11b was present on circulating monocytes and granulocytes, but remained undetectable on lymphocytes. Differentiation of monocytes into classical, intermediate, and non-classical monocyte subsets revealed distinct expression patterns of Mer and activated CD11b. Co-incubation of isolated monocytes and granulocytes with platelet-derived EVs showed that the binding of EVs to immune cells was dependent on Ca++. Our data do not support a particular role for TAM receptors or for activated CD11b in the association of platelet-derived EVs with monocytes and granulocytes in the circulation, as anti-TAM antibodies did not interfere with EV binding to isolated immune cells, as binding was not dependent on the presence of TIM4 acting synergistically with TAM receptors, and as neither low levels of Gas6, required as a linker between phosphatidylserine (PS) on the EV surface and TAM receptors on immune cells, nor masking of PS on the EV surface did interfere with EV binding.


Subject(s)
Blood Platelets/immunology , CD11b Antigen/immunology , Extracellular Vesicles/immunology , Leukocytes, Mononuclear/immunology , Phosphatidylserines/immunology , Receptor Protein-Tyrosine Kinases/immunology , Calcium/immunology , Female , Humans , Male , Membrane Proteins/immunology
11.
Sci Rep ; 7(1): 6522, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28747771

ABSTRACT

Cells release diverse types of vesicles constitutively or in response to proliferation, injury, inflammation, or stress. Extracellular vesicles (EVs) are crucial in intercellular communication, and there is emerging evidence for their roles in inflammation, cancer, and thrombosis. We investigated the thrombogenicity of platelet-derived EVs, which constitute the majority of circulating EVs in human blood, and assessed the contributions of phosphatidylserine and tissue factor exposure on thrombin generation. Addition of platelet EVs to vesicle-free human plasma induced thrombin generation in a dose-dependent manner, which was efficiently inhibited by annexin V, but not by anti-tissue factor antibodies, indicating that it was primarily due to the exposure of phosphatidylserine on platelet EVs. Platelet EVs exhibited higher thrombogenicity than EVs from unstimulated monocytic THP-1 cells, but blockade of contact activation significantly reduced thrombin generation by platelet EVs. Stimulation of monocytic cells with lipopolysaccharide enhanced their thrombogenicity both in the presence and in the absence of contact activation, and thrombin generation was efficiently blocked by anti-tissue factor antibodies. Our study provides evidence that irrespective of their cellular origin, EVs support the propagation of coagulation via the exposure of phosphatidylserine, while the expression of functional tissue factor on EVs appears to be limited to pathological conditions.


Subject(s)
Blood Platelets/metabolism , Extracellular Vesicles/metabolism , Phosphatidylserines/metabolism , Thrombin/metabolism , Thromboplastin/metabolism , Humans , Monocytes/metabolism , Plasma/metabolism , THP-1 Cells
12.
Biomed Res Int ; 2014: 238160, 2014.
Article in English | MEDLINE | ID: mdl-25243124

ABSTRACT

High-mobility group box 1 protein (HMGB1) is a conserved protein with a variety of biological functions inside as well as outside the cell. When released by activated immune cells, it acts as a proinflammatory cytokine. Its delayed release has sparked the interest in HMGB1 as a potential therapeutic target. Here, we studied the adsorption of HMGB1 to anionic methacrylate-based polymers as well as to neutral polystyrene-divinylbenzene copolymers. Both groups of adsorbents exhibited efficient binding of recombinant HMGB1 and of HMGB1 derived from lipopolysaccharide-stimulated peripheral blood mononuclear cells. The adsorption characteristics depended on particle size, porosity, accessibility of the pores, and charge of the polymers. In addition to these physicochemical parameters of the adsorbents, modifications of the molecule itself (e.g., acetylation, phosphorylation, and oxidation), interaction with other plasma proteins or anticoagulants (e.g., heparin), or association with extracellular microvesicles may influence the binding of HMGB1 to adsorbents and lead to preferential depletion of HMGB1 subsets with different biological activity.


Subject(s)
HMGB1 Protein/metabolism , Inflammation Mediators/metabolism , Polymers/chemistry , Adsorption , Adult , Humans , Leukocytes, Mononuclear/metabolism , Microscopy, Electron , Nitrogen , Porosity , Serum Albumin/metabolism , Temperature
13.
Biomacromolecules ; 13(2): 484-8, 2012 Feb 13.
Article in English | MEDLINE | ID: mdl-22229537

ABSTRACT

In liver failure, hydrophobic toxins accumulate in the blood circulation. To support hepatic function, extracorporeal blood purification systems have been developed, in which both cationic and neutral adsorbents are used to remove albumin-bound metabolites from blood. An issue of these systems is the additional removal of coagulation factors containing negatively charged γ-carboxyglutamate (Gla) domains, which, in physiological conditions, are shielded by calcium ions. We hypothesized that complexation of calcium ions by citrate leads to exposure of negative Gla domains, resulting in their binding to the positively charged adsorbents. The data presented here confirm that the binding of coagulation factors containing Gla domains to positively charged polymers is enhanced in the presence of citrate as compared to heparin. This effect increased with increasing charge density of the polymer and has important implications for the clinical application of positively charged polymers.


Subject(s)
Anticoagulants/chemistry , Blood Coagulation Factors/chemistry , Citric Acid/chemistry , Heparin/chemistry , Ion Exchange Resins/chemistry , 1-Carboxyglutamic Acid/blood , 1-Carboxyglutamic Acid/chemistry , Adsorption , Anticoagulants/blood , Bilirubin/blood , Bilirubin/chemistry , Blood Coagulation Factors/metabolism , Calcium/blood , Calcium/chemistry , Cations, Divalent , Cholic Acid/blood , Cholic Acid/chemistry , Citric Acid/blood , End Stage Liver Disease/blood , End Stage Liver Disease/therapy , Heparin/blood , Humans , Ion Exchange Resins/metabolism , Renal Dialysis/instrumentation , Renal Dialysis/methods , Static Electricity
14.
Biomacromolecules ; 12(10): 3733-40, 2011 Oct 10.
Article in English | MEDLINE | ID: mdl-21842874

ABSTRACT

In the course of severe pathological conditions, such as acute liver failure and sepsis, toxic metabolites and mediators of inflammation are released into the patient's circulation. One option for the supportive treatment of these conditions is plasmapheresis, in which plasma, after being separated from the cellular components of the blood, is cleansed by adsorption of harmful molecules on polymers or activated carbon. In this work, the adsorption characteristics of activated carbon beads with levels of activation ranging from 0 to 86% were assessed for both hydrophobic compounds accumulating in liver failure (bilirubin, cholic acid, phenol and tryptophan) and cytokines (tumor necrosis factor α and interleukin-6). Progressive activation resulted in significant gradual reduction of both bulk density and mean particle size, in an increase in the specific surface area, and to changes in pore size distribution with progressive broadening of micropores. These structural changes went hand in hand with enhanced adsorption of small adsorbates, such as IL-6 and cholic acid and, to a lesser extent, also of large molecules, such as TNF-α.


Subject(s)
Inflammation/therapy , Liver Failure, Acute/therapy , Plasmapheresis/methods , Adsorption , Bilirubin/blood , Carbon/chemistry , Cholates/blood , Humans , Inflammation/blood , Inflammation/complications , Inflammation/physiopathology , Interleukin-6/blood , Liver Failure, Acute/blood , Liver Failure, Acute/complications , Liver Failure, Acute/physiopathology , Particle Size , Phenol/blood , Porosity , Tryptophan/blood , Tumor Necrosis Factor-alpha/blood
15.
Chemistry ; 17(16): 4454-9, 2011 Apr 11.
Article in English | MEDLINE | ID: mdl-21432921

ABSTRACT

A stimuli-responsive controlled-release delivery system based on carbon nanotubes is demonstrated. Through TEM, FTIR spectroscopic, and thermogravimetric analysis, functional groups have been successfully attached to the open ends of the tubes, thereby enabling functionalized silica spheres to preferentially attach to the ends. This, in essence, plugs the ends of the tube. Controlling release of encapsulated materials within the tubes is illustrated by fluorescein-filled carbon nanotubes. The discharge process can be triggered by exposure to 1,4-dithiothreitol (DTT) or at elevated temperature. Moreover, both triggering systems, DTT and temperature, provide rate of release control through increased DTT concentration or temperature choice, respectively. This delivery system paves the way for the development of a new generation of site-selective, controlled-release, drug-delivery systems, and interactive nanosensor devices.


Subject(s)
Dithiothreitol/analogs & derivatives , Dithiothreitol/chemistry , Drug Delivery Systems , Nanotubes, Carbon/chemistry , Silicon Dioxide/chemistry , Fluorescein/administration & dosage , Fluorescein/chemistry , Nanotubes, Carbon/ultrastructure , Silicon Dioxide/administration & dosage , Spectroscopy, Fourier Transform Infrared , Temperature
16.
J Biomed Nanotechnol ; 7(6): 830-9, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22416583

ABSTRACT

Carbon nanotubes possess interesting physicochemical properties which make them potentially usable in medicine. Single-walled carbon nanotubes and multi-walled carbon nanotubes, for example, may carry and deliver anticancer drugs, such as cisplatin. Magnetic nanoparticles, like iron filled MWCNT, can be used in hyperthermia therapy. However, their hydrophobic character is a major difficulty, as preparation of stable dispersions of carbon nanotubes in biological buffers is an essential step towards biomedical applications. Recently, a novel treatment using the glycolipid, Galactosyl-beta1-sphingosine (psychosine), was employed to make stable suspensions of psychosine-functionalized carbon nanotubes in biological buffers. In this paper, the interactions of psychosine-functionalized carbon nanotubes with a part of the human immune system, complement, is presented. To investigate if human serum complement proteins can interact with psychosine-functionalized carbon nanotubes, complement consumption (depletion) assays were conducted. Moreover, direct protein binding studies, to analyze the interaction of plasma proteins with the psychosine-functionalized carbon nanotubes, using affinity chromatography and sodium dodecyl sulphate polyacrylamide gel electrophoresis techniques, were applied. The psychosine-functionalized carbon nanotubes activate human complement via the classical pathway. Interestingly, as the hydrophilic part of the glycolipid may bind to ficolins, the lectin pathway could also be involved. Binding of human plasma proteins is very selective as only very few proteins adsorb to the psychosine-functionalized carbon nanotube surface, when placed in contact with human plasma. Bovine serum albumin-coated carbon nanotubes were used as a standard to find the differences in complement activation and protein adsorption patterns, caused by various non-covalent coatings of carbon nanotubes.


Subject(s)
Complement Activation/drug effects , Complement System Proteins/metabolism , Nanotubes, Carbon/chemistry , Psychosine/pharmacology , Adsorption/drug effects , Animals , Blood Proteins/metabolism , Cattle , Electrophoresis, Polyacrylamide Gel , Humans , Mass Spectrometry , Microscopy, Atomic Force , Protein Binding/drug effects , Psychosine/chemistry , Serum Albumin, Bovine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...