Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
RSC Adv ; 14(16): 10930-10941, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38577424

ABSTRACT

One of the challenges hindering the commercialization of perovskite solar cells (PSCs) is the presence of toxic metals such as lead in their composition. Simulation studies using SCAPS-1D have already been conducted on lead-free PSCs to find optimized solar cell parameters, having tin as the primary candidate for replacing lead in perovskites. Here, we used fullerene-C60 and its derivative PCBM as interlayers in a lead-free tin-based PSC between the ETL (ZnO) and the perovskite MASI in both regular and inverted configurations of PSCs using SCAPS-1D software. To the best of our knowledge, this is the first simulation study reporting the impact of using fullerene-C60 and PCBM as interlayers in lead-free PSCs. The defect density (Nt) of the perovskite material is varied, allowing us to observe its influence on the power conversion efficiency (PCE). Using an Nt value of 1017 cm-3 without the interlayer, the PCE was 6.90% and 3.72% for regular and inverted devices. Using PCBM as an interlayer improves the efficiency of both simulated PSCs, achieving a maximum PCE of 8.11% and 5.26% for the regular and inverted configurations, respectively. Decreasing the Nt from 1017 cm-3 to 1016 cm-3 caused a significant increase in efficiency, reaching 13.38% (n-i-p) and 10.00% (p-i-n). Finally, using the optimized parameters and an ideal Nt value (1013 cm-3), both PSCs achieved a PCE close to 30%.

2.
RSC Adv ; 14(3): 1612-1624, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38179099

ABSTRACT

In this study, calcium ferrites with different Ca : Fe atomic ratios (1 : 1, 1 : 2, 1 : 3 and 2 : 1) were prepared from Ca and Fe nitrates treated at 300, 700 and 900 °C and evaluated for phosphate adsorption and recovery from wastewater. TG, XRD, Mössbauer spectroscopy, SEM, VSM magnetic measurements, and BET analyses showed the formation of two different calcium ferrite phases, i.e., CaFe2O4 and Ca2Fe2O5 at 700 and 900 °C. The adsorption results indicated that the formation of calcium ferrite structure is critical for phosphate adsorption/recovery. Evaluation of the pH, initial phosphate concentration, contact time, coexisting ions and desorption conditions showed remarkable adsorption capacities of 62-75 mg g-1 for CaFe1:2-700 and 28-43 mg g-1 for CaFe1:2-900. The phosphate adsorption on the Ca ferrite surfaces is so strong that the recovery/desorption showed limited efficiencies, e.g., 15-39%.

3.
Materials (Basel) ; 15(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35888417

ABSTRACT

Intelligent cementitious materials integrated with carbon nanofibers (CNFs) have the potential to be used as sensors in structural health monitoring (SHM). The difficulty in dispersing CNFs in cement-based matrices, however, limits the sensitivity to deformation (gauge factor) and strength. Here, we synthesise CNF by chemical vapour deposition on the surface of calcium oxide (CaO) and, for the first time, investigate this amphiphilic carbon nanomaterial for self-sensing in mortar. SEM, TEM, TGA, Raman and VSM were used to characterise the produced CNF@CaO. In addition, the electrical resistivity of the mortar, containing different concentrations of CNF with and without CaO, was measured using the four-point probe method. Furthermore, the piezoresistive response of the composite was quantified by means of compressive loading. The synthesised CNF was 5-10 µm long with an average diameter of ~160 nm, containing magnetic nanoparticles inside. Thermal decomposition of the CNF@CaO compound indicated that 26% of the material was composed of CNF; after CaO removal, 84% of the material was composed of CNF. The electrical resistivity of the material drops sharply at concentrations of 2% by weight of CNF and this drop is even more pronounced for samples with 1.2% by weight of washed CaO. This indicates a better dispersion of the material when the CaO is removed. The sensitivity to deformation of the sample with 1.2% by weight of CNF@CaO was quantified as a gauge factor (GF) of 1552, while all other samples showed a GF below 100. Its FCR amplitude can vary inversely up to 8% by means of cyclic compressive loading. The method proposed in this study provides versatility for the fabrication of carbon nanofibers on a tailored substrate to promote self-sensing in cementitious materials.

4.
Bioresour Technol ; 246: 28-33, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28779952

ABSTRACT

In this work, the effect of controlled thermal treatment to tune biochar surface properties such as area/porosity, functionalities and reactivity was investigated. TG-MS, CHN, Raman, IR, BET, Zeta and SEM analyses suggested that thermal treatment led to the decomposition of an organic complex/amorphous phase to produce micropores based on graphene nanostructures and a strong increase on surface area from 3m2g-1 for biochar to 30, 408 and 590m2g-1, at 400, 600 and 800°C, respectively. The treatment also led to a gradual decrease on oxygen content from 27 to 14wt% at 800°C due to decomposition of surface functionalities changing surface properties such as zeta potential, adsorption of anionic and cationic species and an increase on the activity for sulfide oxidation which is discussed in terms of increase in surface area and the presence of surface redox quinone groups.


Subject(s)
Charcoal , Adsorption , Graphite , Surface Properties
5.
Environ Sci Pollut Res Int ; 24(7): 6151-6156, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27053048

ABSTRACT

This work describes the synthesis, characterization, and application of an active heterogeneous photo-Fenton system obtained from two different wastes, i.e., laterite (an iron mining waste) and the acid aqueous fraction (AAF) from bio-oil production. AAF with high acidity (ca. 3 molH+ L-1) and organic concentration (25 wt.%) obtained from biomass flash pyrolysis was used for the efficient extraction of Fe3+ from laterite waste. After extraction, the mixture Fe3+/AAF was dried and treated at different temperatures, i.e., 500, 650, and 800 °C, to obtain Fe/C reactive composites. Mössbauer, XRD, TG, elemental analyses, and SEM/EDS showed the presence of highly disperse Fe oxide nanoparticles at 500 and 650 °C and Fe0 particles in the material obtained at 800 °C with carbon contents varying from 74 to 80 %. The three composites were tested as heterogeneous catalysts in the photo-Fenton reaction for the oxidation of the model dye contaminant methylene blue, showing high activities at neutral pH.


Subject(s)
Carbon/chemistry , Industrial Waste/analysis , Iron Compounds/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Hot Temperature
6.
Environ Sci Pollut Res Int ; 22(2): 856-63, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24519746

ABSTRACT

In this work, reactive iron nanoparticles dispersed in a carbon matrix were produced by the controlled thermal decomposition of Fe(3+) ions in sucrose. During the sucrose decomposition, the Fe(3+) ions are reduced to form iron nanometric cores dispersed in a porous carbonaceous matrix. The materials were prepared with iron contents of 1, 4, and 8 wt.% and heated at 400, 600, and 800 °C. Analyses by X-ray diffraction, Mössbauer spectroscopy, magnetization measurements, Raman spectroscopy, termogravimetric analyses, BET surface area, scanning, and transmission electron microscopy showed that at 400 °C, the materials are composed essentially of Fe3O4 particles, while treatments at higher temperatures, i.e., 600 and 800 °C, produced phases such as Fe(0) and Fe3C. The composites were tested for the oxidation of methylene blue with H2O2 by a Fenton-type reaction and also H2O2 decomposition, showing better performance for the material containing 8 % of iron heated at 400 and 600 °C. These results are discussed in terms of Fe(2+) surface species in the Fe3O4 nanoparticles active for the Fenton reaction.


Subject(s)
Carbon/chemistry , Hydrogen Peroxide/chemistry , Magnetite Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Sucrose , Water Pollutants, Chemical/metabolism , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL