Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38399377

ABSTRACT

Plant extracts are in the focus of the pharmaceutical industry as potential antimicrobials for oral care due to their high antimicrobial activity coupled with low production costs and safety for eukaryotic cells. Here, we show that the extract from Hop (Humulus lupulus L.) exhibits antimicrobial activity against Staphylococcus aureus and Streptococci in both planktonic and biofilm-embedded forms. An extract was prepared by acetone extraction from hop infructescences, followed by purification and solubilization of the remaining fraction in ethanol. The effect of the extract on S. aureus (MSSA and MRSA) was comparable with the reference antibiotics (amikacin, ciprofloxacin, and ceftriaxone) and did not depend on the bacterial resistance to methicillin. The extract also demonstrated synergy with amikacin on six S. aureus clinical isolates, on four of six isolates with ciprofloxacin, and on three of six isolates with ceftriaxone. On various Streptococci, while demonstrating lower antimicrobial activity, an extract exhibited a considerable synergistic effect in combination with two of three of these antibiotics, decreasing their MIC up to 512-fold. Moreover, the extract was able to penetrate S. aureus and S. mutans biofilms, leading to almost complete bacterial death within them. The thin-layer chromatography and LC-MS of the extract revealed the presence of prenylated flavonoids (2',4',6',4-tetrahydroxy-3'-geranylchalcone) and acylphloroglucides (cohumulone, colupulone, humulone, and lupulone), apparently responsible for the observed antimicrobial activity and ability to increase the efficiency of antibiotics. Taken together, these data suggest an extract from H. lupulus as a promising antimicrobial agent for use both as a solely antiseptic and to potentiate conventional antimicrobials.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123701, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38070313

ABSTRACT

In order to expand the arsenal of tools and areas for practical use of BODIPY dyes as bifunctional fluorescent theranostics, we studied the effect of the meso-substituents nature and medium properties on photo- and pH-stability, efficiency of singlet oxygen generation, and affinity to biostructures of terpene-BODIPY conjugates. The BODIPYs fused with myrtenol or thiotherpenoid via carboxylic acid residues exhibit high stability over a wide pH range and the presence of a bulky substituent at the meso-position of BODIPY conjugates increases their photostability two-fold compared to structurally related meso-unsubstituted analogues. Furthermore, the photodegradation rate of the conjugates directly depends on their ability to generate singlet oxygen and the course probability of the corresponding red-ox reactions involving reactive oxygen species. The conjugate of BODIPY with a thiotherpenoid demonstrated high ability to penetrate the membranes of filamentous and yeast-like fungi and bind to membrane of organelles in the fungal cell. At the same time, this compound also had a high ability to penetrate into biofilms of Staphylococcus aureus and Klebsiella pneumoniae and into bacterial cells within the matrix, which makes this compound promising for staining intracellular structures of eukaryotic cells and bacteria embedded into biofilms.


Subject(s)
Fluorescent Dyes , Singlet Oxygen , Singlet Oxygen/metabolism , Fluorescent Dyes/chemistry , Boron Compounds/chemistry , Bacteria/metabolism , Hydrogen-Ion Concentration , Fungi
3.
Int J Mol Sci ; 24(22)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38003281

ABSTRACT

In the last decade, Ficin, a proteolytic enzyme extracted from the latex sap of the wild fig tree, has been widely investigated as a promising tool for the treatment of microbial biofilms, wound healing, and oral care. Here we report the antibiofilm properties of the enzyme immobilized on soluble carboxymethyl chitosan (CMCh) and CMCh itself. Ficin was immobilized on CMCh with molecular weights of either 200, 350 or 600 kDa. Among them, the carrier with a molecular weight of 200 kDa bound the maximum amount of enzyme, binding up to 49% of the total protein compared to 19-32% of the total protein bound to other CMChs. Treatment with pure CMCh led to the destruction of biofilms formed by Streptococcus salivarius, Streptococcus gordonii, Streptococcus mutans, and Candida albicans, while no apparent effect on Staphylococcus aureus was observed. A soluble Ficin was less efficient in the destruction of the biofilms formed by Streptococcus sobrinus and S. gordonii. By contrast, treatment with CMCh200-immobilized Ficin led to a significant reduction of the biofilms of the primary colonizers S. gordonii and S. mutans. In model biofilms obtained by the inoculation of swabs from teeth of healthy volunteers, the destruction of the biofilm by both soluble and immobilized Ficin was observed, although the degree of the destruction varied between artificial plaque samples. Nevertheless, combined treatment of oral Streptococci biofilm by enzyme and chlorhexidine for 3 h led to a significant decrease in the viability of biofilm-embedded cells, compared to solely chlorhexidine application. This suggests that the use of either soluble or immobilized Ficin would allow decreasing the amount and/or concentration of the antiseptics required for oral care or improving the efficiency of oral cavity sanitization.


Subject(s)
Chitosan , Ficain , Humans , Ficain/pharmacology , Chlorhexidine/pharmacology , Chitosan/pharmacology , Streptococcus mutans , Streptococcus gordonii , Biofilms
4.
Int J Mol Sci ; 24(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37239822

ABSTRACT

In the last decades, it has been shown that biofilm-associated infections in most cases are caused by rather two or even more pathogens than by single microorganisms. Due to intermicrobial interactions in mixed communities, bacteria change their gene expression profile, in turn leading to alterations in the biofilm structure and properties, as well as susceptibility to antimicrobials. Here, we report the alterations of antimicrobials efficiency in mixed biofilms of Staphylococcus aureus-Klebsiella pneumoniae in comparison with mono-species biofilms of each counterpart and discuss possible mechanisms of these alterations. In cell clumps detached from dual-species biofilms, S. aureus became insensitive to vancomycin, ampicillin, and ceftazidime compared to solely S. aureus cell clumps. In turn, the increased efficiency of amikacin and ciprofloxacin against both bacteria could be observed, compared to mono-species biofilms of each counterpart. Scanning electron microscopy and confocal microscopy indicate the porous structure of the dual-species biofilm, and differential fluorescent staining revealed an increased number of polysaccharides in the matrix, in turn leading to more loose structure and thus apparently providing increased permeability of the dual-species biofilm to antimicrobials. The qRT-PCR showed that ica operon in S. aureus became repressed in mixed communities, and polysaccharides are produced mainly by K. pneumoniae. While the molecular trigger of these changes remains undiscovered, detailed knowledge of the alterations in antibiotic susceptibility to given drugs opens doors for treatment correction options for S. aureus-K. pneumoniae biofilm-associated infections.


Subject(s)
Anti-Infective Agents , Staphylococcal Infections , Humans , Staphylococcus aureus/genetics , Klebsiella pneumoniae/genetics , Staphylococcal Infections/microbiology , Biofilms , Anti-Infective Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests
5.
Molecules ; 28(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36985515

ABSTRACT

Over the past decades, 2(5H)-furanone derivatives have been extensively studied because of their promising ability to prevent the biofilm formation by various pathogenic bacteria. Here, we report the synthesis of a series of optically active sulfur-containing 2(5H)-furanone derivatives and characterize their biological activity. Novel thioethers were obtained by an interaction of stereochemically pure 5-(l)-menthyloxy- or 5-(l)-bornyloxy-2(5H)-furanones with aromatic thiols under basic conditions. Subsequent thioethers oxidation by an excess of hydrogen peroxide in acetic acid resulted in the formation of the corresponding chiral 2(5H)-furanone sulfones. The structure of synthesized compounds was confirmed by IR and NMR spectroscopy, HRMS, and single crystal X-ray diffraction. The leading compound, 26, possessing the sulfonyl group and l-borneol moiety, exhibited the prominent activity against Staphylococcus aureus and Bacillus subtilis with MICs of 8 µg/mL. Furthermore, at concentrations of 0.4-0.5 µg/mL, the sulfone 26 increased two-fold the efficacy of aminoglycosides gentamicin and amikacin against S. aureus. The treatment of the model-infected skin wound in the rat with a combination of gentamicin and sulfone 26 speeded up the bacterial decontamination and improved the healing of the wound. The presented results provide valuable new insights into the chemistry of 2(5H)-furanone derivatives and associated biological activities.


Subject(s)
Bacteria , Staphylococcus aureus , Rats , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Amikacin , Gentamicins , Furans/chemistry
6.
Sci Data ; 10(1): 160, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36949058

ABSTRACT

Differential fluorescent staining is an effective tool widely adopted for the visualization, segmentation and quantification of cells and cellular substructures as a part of standard microscopic imaging protocols. Incompatibility of staining agents with viable cells represents major and often inevitable limitations to its applicability in live experiments, requiring extraction of samples at different stages of experiment increasing laboratory costs. Accordingly, development of computerized image analysis methodology capable of segmentation and quantification of cells and cellular substructures from plain monochromatic images obtained by light microscopy without help of any physical markup techniques is of considerable interest. The enclosed set contains human colon adenocarcinoma Caco-2 cells microscopic images obtained under various imaging conditions with different viable vs non-viable cells fractions. Each field of view is provided in a three-fold representation, including phase-contrast microscopy and two differential fluorescent microscopy images with specific markup of viable and non-viable cells, respectively, produced using two different staining schemes, representing a prominent test bed for the validation of image analysis methods.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Image Processing, Computer-Assisted , Humans , Adenocarcinoma/diagnostic imaging , Caco-2 Cells , Colonic Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted/methods , Machine Learning , Staining and Labeling
7.
Medicina (Kaunas) ; 58(12)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36556912

ABSTRACT

Background and Objectives: Candida albicans causes various diseases ranging from superficial mycoses to life-threatening systemic infections often associated with biofilm formation, including mixed fungal−bacterial consortia. The biofilm matrix protects cells, making Candida extremely resistant to treatment. Here, we show that the bovhyaluronidase azoximer (Longidaza®) in vitro destroys the biofilm formed by either C. albicans alone or mixed with bacteria, this way decreasing the concentrations of antimicrobials required for the pathogen's eradication. Materials and Methods: Bovhyaluronidase azoximer, Longidaza® was obtained from NPO Petrovax Pharm Ltd., Moscow, Russia as lyophilized powder. The antifungal activity was assessed by microdilution assay and CFUs counting. Antibiofilm activity was evaluated via biofilms staining and scanning electron microscopy. Results: Thus, treatment with Longidaza® reduced the biofilm biomass of nine C. albicans clinical isolates by 30−60%, while mixed biofilms of C. albicans with various bacteria were destroyed by 30−40%. Furthermore, the concentration of fluconazole required to achieve a similar reduction of the residual respiratory activity of detached cell clumps of four C. albicans isolates has been reduced four-fold when combined with Longidaza®. While in the biofilm, two of four isolates became significantly more susceptible to fluconazole in combination with Longidaza®. Conclusion: Taken together, our data indicate that Longidaza® is capable of suppression of tissues and artificial surfaces biofouling by C. albicans biofilms, as well as facilitating drug penetration into the cell clumps, this way decreasing the effective MIC of antifungals.


Subject(s)
Antifungal Agents , Candida albicans , Hyaluronoglucosaminidase , Antifungal Agents/pharmacology , Biofilms/drug effects , Candida albicans/drug effects , Fluconazole/pharmacology , Hyaluronoglucosaminidase/pharmacology , Polymers/pharmacology
8.
Antibiotics (Basel) ; 11(12)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36551400

ABSTRACT

Infectious diseases caused by various nosocomial microorganisms affect worldwide both immunocompromised and relatively healthy persons. Bacteria and fungi have different tools to evade antimicrobials, such as hydrolysis damaging the drug, efflux systems, and the formation of biofilm that significantly complicates the treatment of the infection. Here, we show that myrtenol potentiates the antimicrobial and biofilm-preventing activity of conventional drugs against S. aureus and C. albicans mono- and dual-species cultures. In our study, the two optical isomers, (-)-myrtenol and (+)-myrtenol, have been tested as either antibacterials, antifungals, or enhancers of conventional drugs. (+)-Myrtenol demonstrated a synergistic effect with amikacin, fluconazole, and benzalkonium chloride on 64-81% of the clinical isolates of S. aureus and C. albicans, including MRSA and fluconazole-resistant fungi, while (-)-myrtenol increased the properties of amikacin and fluconazole to repress biofilm formation in half of the S. aureus and C. albicans isolates. Furthermore, myrtenol was able to potentiate benzalkonium chloride up to sixteen-fold against planktonic cells in an S. aureus-C. albicans mixed culture and repressed the adhesion of S. aureus. The mechanism of both (-)-myrtenol and (+)-myrtenol synergy with conventional drugs was apparently driven by membrane damage since the treatment with both terpenes led to a significant drop in membrane potential similar to the action of benzalkonium chloride. Thus, due to the low toxicity of myrtenol, it seems to be a promising agent to increase the efficiency of the treatment of infections caused by bacteria and be fungi of the genus Candida as well as mixed fungal-bacterial infections, including resistant strains.

9.
Pathogens ; 12(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36678375

ABSTRACT

Candida albicans and Staphylococcus aureus are human pathogens that are able to form mixed biofilms on the surface of mucous membranes, implants and catheters. In biofilms, these pathogens have increased resistance to antimicrobials, leading to extreme difficulties in the treatment of mixed infections. The growing frequency of mixed infections caused by S. aureus and C. albicans requires either the development of new antimicrobials or the proposal of alternative approaches to increase the efficiency of conventional ones. Here, we show the antimicrobial, biofilm-preventing and biofilm-eradicating activity of 2(5H)-furanone derivative F131, containing an l-borneol fragment against S. aureus-C. albicans mixed biofilms. Furanone F131 is also capable of inhibiting the formation of monospecies and mixed biofilms by S. aureus and C. albicans. The minimal biofilm-prevention concentration (MBPC) of this compound was 8-16 µg/mL for S. aureus and C. albicans mono- and two-species biofilms. While the compound demonstrates slightly lower activity compared to conventional antimicrobials (gentamicin, amikacin, fluconazole, terbinafine and benzalkonium chloride), F131 also increases the antimicrobial activity of fluconazole-gentamicin and benzalkonium chloride against mixed biofilms of S. aureus-C. albicans, thus reducing MBPC of fluconazole-gentamicin by 4-16 times and benzalkonium chloride twofold. F131 does not affect the transcription of the MDR1, CDR1 and CDR2 genes, thus suggesting a low risk of micromycete resistance to this compound. Altogether, combined use of antibiotics with a F131 could be a promising option to reduce the concentration of fluconazole used in antiseptic compositions and reduce the toxic effect of benzalkonium chloride and gentamicin. This makes them an attractive starting point for the development of alternative antimicrobials for the treatment of skin infections caused by S. aureus-C. albicans mixed biofilms.

10.
Pharmaceutics ; 13(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34834156

ABSTRACT

While in a biofilm, bacteria are extremely resistant to both antimicrobials and the immune system, leading to the development of chronic infection. Here, we show that bovine hyaluronidase fused with a copolymer of 1,4-ethylenepiperazine N-oxide and (N-carboxymethyl) -1,4-ethylenepiperazinium bromide (Longidaza®) destroys both mono- and dual-species biofilms formed by various bacteria. After 4 h of treatment with 750 units of the enzyme, the residual biofilms of Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae preserved about 50-70% of their initial mass. Biomasses of dual-species biofilms formed by S. aureus and the four latter species were reduced 1.5-fold after 24 h treatment, while the significant destruction of S. aureus-P. aeruginosa and S. aureus-K. pneumoniae was also observed after 4 h of treatment with Longidaza®. Furthermore, when applied in combination, Longidaza® increased the efficacy of various antimicrobials against biofilm-embedded bacteria, although with various increase-factor values depending on both the bacterial species and antimicrobials chosen. Taken together, our data indicate that Longidaza® destroys the biofilm structure, facilitating the penetration of antimicrobials through the biofilm, and in this way improving their efficacy, lowering the required dose and thus also potentially reducing the associated side effects.

11.
Mar Drugs ; 19(4)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33807362

ABSTRACT

Chitosan, the product of chitin deacetylation, is an excellent candidate for enzyme immobilization purposes. Here we demonstrate that papain, an endolytic cysteine protease (EC: 3.4.22.2) from Carica papaya latex immobilized on the matrixes of medium molecular (200 kDa) and high molecular (350 kDa) weight chitosans exhibits anti-biofilm activity and increases the antimicrobials efficiency against biofilm-embedded bacteria. Immobilization in glycine buffer (pH 9.0) allowed adsorption up to 30% of the total protein (mg g chitosan-1) and specific activity (U mg protein-1), leading to the preservation of more than 90% of the initial total activity (U mL-1). While optimal pH and temperature of the immobilized papain did not change, the immobilized enzyme exhibited elevated thermal stability and 6-7-fold longer half-life time in comparison with the soluble papain. While one-half of the total enzyme dissociates from both carriers in 24 h, this property could be used for wound-dressing materials design with dosed release of the enzyme to overcome the relatively high cytotoxicity of soluble papain. Our results indicate that both soluble and immobilized papain efficiently destroy biofilms formed by Staphylococcus aureus and Staphylococcus epidermidis. As a consequence, papain, both soluble and immobilized on medium molecular weight chitosan, is capable of potentiating the efficacy of antimicrobials against biofilm-embedded Staphylococci. Thus, papain immobilized on medium molecular weight chitosan appears a presumably beneficial agent for outer wound treatment for biofilms destruction, increasing antimicrobial treatment effectiveness.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Carica/enzymology , Chitosan/chemistry , Drug Carriers , Papain/pharmacology , Anti-Bacterial Agents/isolation & purification , Biofilms/growth & development , Drug Compounding , Enzyme Stability , Hydrogen-Ion Concentration , Molecular Weight , Papain/isolation & purification , Staphylococcus aureus , Staphylococcus epidermidis/drug effects , Staphylococcus epidermidis/growth & development , Temperature
12.
ACS Appl Bio Mater ; 4(8): 6227-6235, 2021 08 16.
Article in English | MEDLINE | ID: mdl-35006906

ABSTRACT

This article describes the design and biological properties of a BODIPY FL-labeled monoterpenoid BF2-meso-(4-((1″R)-6″,6″-dimethylbicyclo[3.1.1]hept-2″-ene-2″)yl-methoxycarbonylpropyl)-3,3',5,5'-tetramethyl-2,2'-dipyrromethene conjugate (BODIPYmyrt). The fluorophore was characterized using X-ray, NMR, MS, and UV/vis spectroscopy. The conjugate exhibits a high quantum yield (to ∼100%) in the region 515-518 nm. BODIPYmyrt effectively penetrates the membranes of the bacterial and fungal cells and therefore can be used to examine the features of a broad spectrum of Gram-positive and Gram-negative bacteria and pathogenic fungi as well. Moreover, BODIPYmyrt exhibits a moderate tropism to the subcellular structures in mammalian cells (e.g., mitochondria), thereby providing an attractive scaffold for fluorophores to examine these particular organelles.


Subject(s)
Anti-Bacterial Agents , Monoterpenes , Animals , Boron Compounds , Fluorescent Dyes/chemistry , Gram-Negative Bacteria , Gram-Positive Bacteria , Mammals
13.
Int J Biol Macromol ; 164: 4205-4217, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32916198

ABSTRACT

Biofouling is among the key factors slowing down healing of acute and chronic wounds. Here we report both anti-biofilm and wound-healing properties of the chitosan-immobilized Ficin. The proposed chitosan-adsorption approach allowed preserving ~90% of the initial total activity of the enzyme (when using azocasein as a substrate) with stabilization factor of 4.9, and ~70% of its specific enzymatic activity. In vitro, the chitosan-immobilized Ficin degraded staphylococcal biofilms, this way increasing the efficacy of antimicrobials against biofilm-embedded bacteria. In vivo, in the presence of Ficin (either soluble or immobilized), the S.aureus-infected skin wound areas in rats reduced twofold after 4 instead of 6 days treatment. Moreover, topical application of the immobilized enzyme resulted in a 3-log reduction of S. aureus cell count on the wound surfaces in 6 days, compared to more than 10 days required to achieve the same effect in control. Additional advantages include smoother reepithelisation, and new tissue formation exhibiting collagen structure characteristics closely reminiscent of those observed in the native tissue. Taken together, our data suggest that both soluble and immobilized Ficin appear beneficial for the treatment of biofilm-associated infections, as well as speeding up wound healing and microbial decontamination.


Subject(s)
Biofilms/drug effects , Chitosan/chemistry , Enzymes, Immobilized , Ficain/chemistry , Ficain/pharmacology , Wound Healing/drug effects , Drug Carriers/chemistry , Hydrogen-Ion Concentration , Kinetics , Microbial Sensitivity Tests , Proteolysis , Solubility , Staphylococcus aureus/drug effects
14.
Sci Rep ; 10(1): 14849, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32908166

ABSTRACT

In mixed infections, the bacterial susceptibility differs significantly compared to monocultures of bacteria, and generally the concentrations of antibiotics required for the treatment increases drastically. For S. aureus and P. aeruginosa dual species biofilms, it has been numerously reported that P. aeruginosa decreases S. aureus susceptibility to a broad range of antibiotics, including beta-lactams, glycopeptides, aminoglycosides, macrolides, while sensitizes to quinolones via secretion of various metabolites. Here we show that S. aureus also modulates the susceptibility of P. aeruginosa to antibiotics in mixed cultures. Thus, S. aureus-P. aeruginosa consortium was characterized by tenfold increase in susceptibility to ciprofloxacin and aminoglycosides compared to monocultures. The same effect could be also achieved by the addition of cell-free culture of S. aureus to P. aeruginosa biofilm. Moreover, similar increase in antibiotics efficacy could be observed following addition of S. aureus suspension to the P. aeruginosa mature biofilm, compared to P. aeruginosa monoculture, and vice versa. These findings open promising perspectives to increase the antimicrobial treatment efficacy of the wounds infected with nosocomial pathogens by the transplantation of the skin residential microflora.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Drug Resistance, Bacterial , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Symbiosis/drug effects
15.
New Microbiol ; 42(1): 29-36, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30671584

ABSTRACT

Among a variety of antimicrobial compounds, the derivatives of 2(5H)-furanone exhibit different effects on Firmicutes and Proteobacteria. While inhibiting quorum-dependent biofilm formation and virulence factor expression by Gram-negative bacteria through specific interference with the AI-2 signaling pathways, these compounds demonstrate bactericidal effects against Gram-positive bacteria. Here we report that 3,4-dichloro-5(S)-[(1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yloxy]-2(5H)-furanone designed as F123 inhibits growth and biofilm formation by the food-poisoning bacterium Bacillus cereus at 8 µg/ ml and kills bacteria at 16 µg/ml. While the growth of Staphylococcus aureus, Staphylococcus epidermidis, Micrococcus luteus, Bacillus subtilis were also inhibited at 8-16 µg/ml of F123, no bactericidal effect on these strains was observed at concentrations up to 128 µg/ml, suggesting pronounced specificity of F123 for B. cereus. In a checker-board assay F123 increased the efficacy of amikacin, gentamicin and benzalkonium chloride against B. cereus with medians of fractional inhibitory concentration index of 0.38, 0.56 and 0.56, respectively. Moreover, the number of viable B. cereus cells in biofilm was reduced by more than 3 orders of magnitude at 64 µg/ml of F123, suggesting its chemotype as a promising enhancer for specific treatment of B. cereus-associated topical infections, including biofilm-embedded bacteria.


Subject(s)
Anti-Bacterial Agents , Bacillus cereus , Furans/pharmacology , Anti-Bacterial Agents/pharmacology , Bacillus cereus/drug effects , Biofilms/drug effects , Furans/chemistry , Gram-Negative Bacteria/drug effects , Signal Transduction/drug effects
16.
PLoS One ; 13(5): e0193267, 2018.
Article in English | MEDLINE | ID: mdl-29715298

ABSTRACT

Fluorescent staining is a common tool for both quantitative and qualitative assessment of pro- and eukaryotic cells sub-population fractions by using microscopy and flow cytometry. However, direct cell counting by flow cytometry is often limited, for example when working with cells rigidly adhered either to each other or to external surfaces like bacterial biofilms or adherent cell lines and tissue samples. An alternative approach is provided by using fluorescent microscopy and confocal laser scanning microscopy (CLSM), which enables the evaluation of fractions of cells subpopulations in a given sample. For the quantitative assessment of cell fractions in microphotographs, we suggest a simple two-step algorithm that combines single cells selection and the statistical analysis. To facilitate the first step, we suggest a simple procedure that supports finding the balance between the detection threshold and the typical size of single cells based on objective cell size distribution analysis. Based on a series of experimental measurements performed on bacterial and eukaryotic cells under various conditions, we show explicitly that the suggested approach effectively accounts for the fractions of different cell sub-populations (like the live/dead staining in our samples) in all studied cases that are in good agreement with manual cell counting on microphotographs and flow cytometry data. This algorithm is implemented as a simple software tool that includes an intuitive and user-friendly graphical interface for the initial adjustment of algorithm parameters to the microphotographs analysis as well as for the sequential analysis of homogeneous series of similar microscopic images without further user intervention. The software tool entitled BioFilmAnalyzer is freely available online at https://bitbucket.org/rogex/biofilmanalyzer/downloads/.


Subject(s)
Algorithms , Bacteria/growth & development , Biofilms/growth & development , Colonic Neoplasms/pathology , Flow Cytometry/methods , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Humans , Single-Cell Analysis/methods , Software , Tumor Cells, Cultured
17.
Front Microbiol ; 8: 2246, 2017.
Article in English | MEDLINE | ID: mdl-29209288

ABSTRACT

The gram-positive opportunistic bacterium Staphylococcus aureus is one of the most common causatives of a variety of diseases including skin and skin structure infection or nosocomial catheter-associated infections. The biofilm formation that is an important virulence factor of this microorganism renders the antibiotic therapy ineffective, because biofilm-embedded bacteria exhibit strongly increased tolerance to antimicrobials. Here, we describe a novel 3-chloro-5(S)-[(1R,2S,5R)-2-isopropyl-5-methylcyclohexyloxy]-4-[4-methylphenylsulfonyl]-2(5H)-furanone (F105), possessing a sulfonyl group and l-menthol moiety. Minimal inhibitory and bactericidal concentration values (MIC and MBC) of F105 were 10 and 40 mg/L, respectively, suggesting F105 biocidal properties. F105 exhibits pronounced activity against biofilm-embedded S. aureus and increases the efficacy of aminoglycosides (amikacin, gentamicin, and kanamycin) and benzalkonium chloride with fractional inhibitory concentration index values of 0.33-0.44 and 0.29, respectively, suggesting an alternative external treatment option, e.g., for wound infections. Moreover, low concentrations (0.5-1.3 mg/L) of F105 reduced the MICs of these antimicrobials twofold. By using confocal laser scanning microscopy and CFU counting, we show explicitly that F105 also restores the antimicrobial activity of gentamicin and ampicillin against S. aureus biofilms by several orders of magnitude. Biofilm structures were not destroyed but sterilized, with embedded cells being almost completely killed at twofold MBC. While F105 is quite toxic (CC50/MBC ratio 0.2), our data suggest that the F105 chemotype might be a promising starting point for the development of complex topical agents for combined anti-staphylococcal biofilm-therapies restoring the efficacy of some antibiotics against difficult to treat S. aureus biofilm.

18.
Sci Rep ; 7: 46068, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28387349

ABSTRACT

Biofilms, the communities of surface-attached bacteria embedded into extracellular matrix, are ubiquitous microbial consortia securing the effective resistance of constituent cells to environmental impacts and host immune responses. Biofilm-embedded bacteria are generally inaccessible for antimicrobials, therefore the disruption of biofilm matrix is the potent approach to eradicate microbial biofilms. We demonstrate here the destruction of Staphylococcus aureus and Staphylococcus epidermidis biofilms with Ficin, a nonspecific plant protease. The biofilm thickness decreased two-fold after 24 hours treatment with Ficin at 10 µg/ml and six-fold at 1000 µg/ml concentration. We confirmed the successful destruction of biofilm structures and the significant decrease of non-specific bacterial adhesion to the surfaces after Ficin treatment using confocal laser scanning and atomic force microscopy. Importantly, Ficin treatment enhanced the effects of antibiotics on biofilms-embedded cells via disruption of biofilm matrices. Pre-treatment with Ficin (1000 µg/ml) considerably reduced the concentrations of ciprofloxacin and bezalkonium chloride required to suppress the viable Staphylococci by 3 orders of magnitude. We also demonstrated that Ficin is not cytotoxic towards human breast adenocarcinoma cells (MCF7) and dog adipose derived stem cells. Overall, Ficin is a potent tool for staphylococcal biofilm treatment and fabrication of novel antimicrobial therapeutics for medical and veterinary applications.


Subject(s)
Biofilms/drug effects , Ficain/pharmacology , Anti-Bacterial Agents/pharmacology , Benzalkonium Compounds/pharmacology , Biofilms/growth & development , Ciprofloxacin/pharmacology , Extracellular Matrix Proteins/metabolism , Humans , Hydrolysis , MCF-7 Cells , Microbial Sensitivity Tests , Staphylococcus/drug effects , Staphylococcus/physiology
19.
Biomed Res Int ; 2015: 890968, 2015.
Article in English | MEDLINE | ID: mdl-26839888

ABSTRACT

Opportunistic bacteria Staphylococcus aureus and Staphylococcus epidermidis often form rigid biofilms on tissues and inorganic surfaces. In the biofilm bacterial cells are embedded in a self-produced polysaccharide matrix and thereby are inaccessible to biocides, antibiotics, or host immune system. Here we show the antibacterial activity of newly synthesized cationic biocides, the quaternary ammonium, and bisphosphonium salts of pyridoxine (vitamin B6) against biofilm-embedded Staphylococci. The derivatives of 6-hydroxymethylpyridoxine were ineffective against biofilm-embedded S. aureus and S. epidermidis at concentrations up to 64 µg/mL, although all compounds tested exhibited low MICs (2 µg/mL) against planktonic cells. In contrast, the quaternary ammonium salt of pyridoxine (N,N-dimethyl-N-((2,2,8-trimethyl-4H-[1,3]dioxino[4,5-c]pyridin-5-yl)methyl)octadecan-1-aminium chloride (3)) demonstrated high biocidal activity against both planktonic and biofilm-embedded bacteria. Thus, the complete death of biofilm-embedded S. aureus and S. epidermidis cells was obtained at concentrations of 64 and 16 µg/mL, respectively. We suggest that the quaternary ammonium salts of pyridoxine are perspective to design new synthetic antibiotics and disinfectants for external application against biofilm-embedded cells.


Subject(s)
Anti-Bacterial Agents , Biofilms/drug effects , Biofilms/growth & development , Pyridoxine , Staphylococcus aureus/physiology , Staphylococcus epidermidis/physiology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Pyridoxine/analogs & derivatives , Pyridoxine/chemistry , Pyridoxine/pharmacology
20.
J Antibiot (Tokyo) ; 68(5): 297-301, 2015 May.
Article in English | MEDLINE | ID: mdl-25335695

ABSTRACT

Gram-positive bacteria can cause various infections including hospital-acquired infections. While in the biofilm, the resistance of bacteria to both antibiotics and the human immune system is increased causing difficulties in the treatment. Bacillus subtilis, a non-pathogenic Gram-positive bacterium, is widely used as a model organism for studying biofilm formation. Here we investigated the effect of novel synthesized chloro- and bromo-containing 2(5H)-furanones on biofilm formation by B. subtilis. Mucobromic acid (3,4-dibromo-5-hydroxy-2(5H)-furanone) and the two derivatives of mucochloric acid (3,4-dichloro-5-hydroxy-2(5H)-furanone)-F8 and F12-were found to inhibit the growth and to efficiently prevent biofilm formation by B. subtilis. Along with the low production of polysaccharide matrix and repression of the eps operon, strong repression of biofilm-related yqxM also occurred in the presence of furanones. Therefore, our data confirm that furanones affect significantly the regulatory pathway(s) leading to biofilm formation. We propose that the global regulator, Spo0A, is one of the potential putative cellular targets for these compounds.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus subtilis/physiology , Biofilms/drug effects , Biofilms/growth & development , Furans/pharmacology , Hydrocarbons, Chlorinated/pharmacology , Anti-Bacterial Agents/chemistry , Furans/chemistry , Microbial Sensitivity Tests , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL