Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Fetal Diagn Ther ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38815555

ABSTRACT

INTRODUCTION: This study aimed to evaluate the occurrence of clinically relevant (sub)microscopic chromosomal aberrations in fetuses with the NT range from 3.0 to 3.4 mm, which would be potentially missed by cfDNA testing. METHODS: A retrospective data analysis of 271 fetuses with NT between 3.0 and 3.4 mm and increased combined test (CT) risk in five cohorts of pregnant women referred for invasive testing and chromosomal microarray was performed. RESULTS: A chromosomal aberration was identified in 18.8% fetuses (1:5; 51/271). In 15% (41/271) of cases trisomy 21, 18, or 13 was found. In 0.7% (2/271) sex chromosome aneuploidy was found. In 1.1% (3/271) of cases, CNV>10Mb was detected, which would potentially also be detected by genome-wide cfDNA testing. The residual risk for missing a submicroscopic chromosome aberration in the presented cohorts is 1.8% (1:54; 5/271). CONCLUSION: Our results indicate that a significant number of fetuses with increased CT risk and presenting NT of 3.0-3.4 mm carry a clinically relevant chromosomal abnormality other than common trisomy. Invasive testing should be offered and counseling on NIPT should include the test limitations that may result in NIPT false negative results in a substantial percentage of fetuses.

2.
J Med Genet ; 60(4): 368-379, 2023 04.
Article in English | MEDLINE | ID: mdl-35882526

ABSTRACT

BACKGROUND: Axenfeld-Rieger syndrome (ARS) is characterised by typical anterior segment anomalies, with or without systemic features. The discovery of causative genes identified ARS subtypes with distinct phenotypes, but our understanding is incomplete, complicated by the rarity of the condition. METHODS: Genetic and phenotypic characterisation of the largest reported ARS cohort through comprehensive genetic and clinical data analyses. RESULTS: 128 individuals with causative variants in PITX2 or FOXC1, including 81 new cases, were investigated. Ocular anomalies showed significant overlap but with broader variability and earlier onset of glaucoma for FOXC1-related ARS. Systemic anomalies were seen in all individuals with PITX2-related ARS and the majority of those with FOXC1-related ARS. PITX2-related ARS demonstrated typical umbilical anomalies and dental microdontia/hypodontia/oligodontia, along with a novel high rate of Meckel diverticulum. FOXC1-related ARS exhibited characteristic hearing loss and congenital heart defects as well as previously unrecognised phenotypes of dental enamel hypoplasia and/or crowding, a range of skeletal and joint anomalies, hypotonia/early delay and feeding disorders with structural oesophageal anomalies in some. Brain imaging revealed highly penetrant white matter hyperintensities, colpocephaly/ventriculomegaly and frequent arachnoid cysts. The expanded phenotype of FOXC1-related ARS identified here was found to fully overlap features of De Hauwere syndrome. The results were used to generate gene-specific management plans for the two types of ARS. CONCLUSION: Since clinical features of ARS vary significantly based on the affected gene, it is critical that families are provided with a gene-specific diagnosis, PITX2-related ARS or FOXC1-related ARS. De Hauwere syndrome is proposed to be a FOXC1opathy.


Subject(s)
Eye Abnormalities , Homeodomain Proteins , Humans , Homeodomain Proteins/genetics , Transcription Factors/genetics , Anterior Eye Segment/abnormalities , Eye Abnormalities/genetics , Eye Abnormalities/diagnosis , Forkhead Transcription Factors/genetics , Mutation
3.
J Clin Med ; 11(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36079096

ABSTRACT

We report the phenotype of a 15-year-old female patient with anterior segment dysgenesis (ASD) caused by a novel heterozygous loss-of-function FOXC1 variant. The proband underwent an ophthalmic examination as well as a molecular genetic investigation comprising exome sequencing, a single nucleotide polymorphism array to access copy number and Sanger sequencing to exclude non-coding causal variants. There was bilateral mild iris hypoplasia with pupil deformation and iridocorneal adhesions. In addition to these features of ASD, the corneas were flat, with mean keratometry readings of 38.8 diopters in the right eye and 39.5 diopters in the left eye. There was a snail track lesion of the left cornea at the level of the Descemet membrane. The central corneal endothelial cell density was reduced bilaterally at 1964 and 1373 cells/mm2 in the right and left eyes, respectively. Molecular genetic analysis revealed that the proband was a carrier of a novel heterozygous frameshifting variant in FOXC1, c.605del p.(Pro202Argfs*113). Neither parent had this change, suggesting a de novo origin which was supported by paternity testing. We found no possibly pathogenic variants in the other genes associated with posterior corneal dystrophies or ASD. Further studies are warranted to verify whether there is a true association between snail track lesions, corneal flattening, and pathogenic variants in FOXC1.

4.
Leukemia ; 36(12): 2793-2801, 2022 12.
Article in English | MEDLINE | ID: mdl-35933523

ABSTRACT

Recently, we defined "CML-like" subtype of BCR::ABL1-positive acute lymphoblastic leukemia (ALL), resembling lymphoid blast crisis of chronic myeloid leukemia (CML). Here we retrospectively analyzed prognostic relevance of minimal residual disease (MRD) and other features in 147 children with BCR::ABL1-positive ALL (diagnosed I/2000-IV/2021, treated according to EsPhALL (n = 133) or other (n = 14) protocols), using DNA-based monitoring of BCR::ABL1 genomic breakpoint and clonal immunoglobulin/T-cell receptor gene rearrangements. Although overall prognosis of CML-like (n = 48) and typical ALL (n = 99) was similar (5-year-EFS 60% and 49%, respectively; 5-year-OS 75% and 73%, respectively), typical ALL presented more relapses while CML-like patients more often died in the first remission. Prognostic role of MRD was significant in the typical ALL (p = 0.0005 in multivariate analysis for EFS). In contrast, in CML-like patients MRD was not significant (p values > 0.2) and inapplicable for therapy adjustment. Moreover, in the typical ALL, risk-prediction could be further improved by considering initial hyperleukocytosis. Early distinguishing typical BCR::ABL1-positive ALL and CML-like patients is essential to enable optimal treatment approach in upcoming protocols. For the typical ALL, tyrosine-kinase inhibitors and concurrent chemotherapy with risk-directed intensity should be recommended; in the CML-like disease, no relevant prognostic feature applicable for therapy tailoring was found so far.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Fusion Proteins, bcr-abl/genetics , Neoplasm, Residual/genetics , Retrospective Studies , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Acute Disease
5.
Ceska Gynekol ; 87(2): 104-110, 2022.
Article in English | MEDLINE | ID: mdl-35667861

ABSTRACT

OBJECTIVE: The evaluation of quantitative fluorescence PCR (QF-PCR) and single nucleotide polymorphism array (SNP array) analysis for the identification of chromosomal abnormalities in products of conception (POC). MATERIALS AND METHODS: A total of 1,094 POC samples were processed at Gennet in the years 2018-2020. Chromosomal aneuploidies were tested by QF-PCR using a Omnibor set (STR markers 13, 18, 21, X a Y), SAB-I set (STR markers 2, 7, 15, 16, 22), SAB-II set (from November 2019, STR markers 4, 6, 14) followed by SNP array analysis (Illumina) on samples with a negative QF-PCR result. All POC samples were tested for maternal contamination. RESULTS: After exclusion of maternal contamination (32% samples) the total number of 742 POC samples were tested by QF-PCR. Chromosomal aneuploidies were found in 273 POC samples (36.8%). Then, 469 QF-PCR negative POC samples were tested by SNP array analysis. Normal female/male profile was confirmed in 402 samples (85.7%) and chromosomal aneuploidies and chromosomal aberrations (deletion/duplication > 10 Mb) in 51 samples (10.9%). Microdeletion/microduplication was found in 16 POC samples (3.4%), two were classified as pathogenic variants and 14 as variants of unknown significance. In a group of women > 35 years of age, statistically significant increase of the chromosomal abnormalities was confirmed. No statistically significant difference between the in vitro fertilization group and the group of spontaneous conception was found. CONCLUSION: The application of the molecular work-up based on the stepwise use of QF-PCR and SNP array clarifies the cause of the abortion in 43% POC samples. The overall detection rate in the I. trimester was 50.4%.


Subject(s)
Aborted Fetus , Prenatal Diagnosis , Aneuploidy , Chromosome Aberrations , Female , Humans , Male , Polymerase Chain Reaction , Pregnancy
6.
Clin Genet ; 102(3): 244-245, 2022 09.
Article in English | MEDLINE | ID: mdl-35726688

ABSTRACT

Confirmation of the newly described 1p36.13-1p36.12 microdeletion syndrome by finding of a 2,2 Mb deletion in the critical region in a Czech two generation family with a very similar phenotype, but in addition also polyneuropathy of lower limbs.


Subject(s)
Chromosome Deletion , Chromosome Disorders , Chromosome Disorders/genetics , Chromosomes, Human, Pair 1/genetics , Czech Republic , Humans , Phenotype , Syndrome
7.
PeerJ ; 7: e7979, 2019.
Article in English | MEDLINE | ID: mdl-31741789

ABSTRACT

BACKGROUND: Autism spectrum disorders (ASD) and intellectual disabilities (ID) are heterogeneous and complex developmental diseases with significant genetic backgrounds and overlaps of genetic susceptibility loci. Copy number variants (CNVs) are known to be frequent causes of these impairments. However, the clinical heterogeneity of both disorders causes the diagnostic efficacy of CNV analysis to be modest. This could be resolved by stratifying patients according to their clinical features. AIM: First, we sought to assess the significance of particular clinical features for the detection of pathogenic CNVs in separate groups of ID and ASD patients and determine whether and how these groups differ from each other in the significance of these variables. Second, we aimed to create a statistical model showing how particular clinical features affect the probability of pathogenic CNV findings. METHOD: We tested a cohort of 204 patients with ID (N = 90) and ASD (N = 114) for the presence of pathogenic CNVs. We stratified both groups according to their clinical features. Fisher's exact test was used to determine the significance of these variables for pathogenic CNV findings. Logistic regression was used to create a statistical model of pathogenic CNV findings. RESULTS: The frequency of pathogenic CNV was significantly higher in the ID group than in the ASD group: 18 (19.78%) versus 8 (7%) (p < 0.004). Microcephaly showed a significant association with pathogenic findings in ID patients (p < 0.01) according to Fisher's exact test, whereas epilepsy showed a significant association with pathogenic findings in ASD patients (p < 0.01). The probability of pathogenic CNV findings when epilepsy occurred in ASD patients was more than two times higher than if epilepsy co-occurred with ID (29.6%/14.0%). Facial dysmorphism was a significant variable for detecting pathogenic CNVs in both groups (ID p = 0.05, ASD p = 0.01). However, dysmorphism increased the probability of pathogenic CNV detection in the ID group nearly twofold compared to the ASD group (44.4%/23.7%). The presence of macrocephaly in the ASD group showed a 25% probability of pathogenic CNV findings by logistic regression, but this was insignificant according to Fisher's exact test. The probability of detecting pathogenic CNVs decreases up to 1% in the absence of dysmorphism, macrocephaly, and epilepsy in the ASD group. CONCLUSION: Dysmorphism, microcephaly, and epilepsy increase the probability of pathogenic CNV findings in ID and ASD patients. The significance of each feature as a predictor for pathogenic CNV detection differs depending on whether the patient has only ASD or ID. The probability of pathogenic CNV findings without dysmorphism, macrocephaly, or epilepsy in ASD patients is low. Therefore the efficacy of CNV analysis is limited in these patients.

8.
PeerJ ; 6: e6183, 2019.
Article in English | MEDLINE | ID: mdl-30647996

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) is a complex heterogeneous developmental disease with a significant genetic background that is frequently caused by rare copy number variants (CNVs). Microarray-based whole-genome approaches for CNV detection are widely accepted. However, the clinical significance of most CNV is poorly understood, so results obtained using such methods are sometimes ambiguous. We therefore evaluated a targeted approach based on multiplex ligation-dependent probe amplification (MLPA) using selected probemixes to detect clinically relevant variants for diagnostic testing of ASD patients. We compare the reliability and efficiency of this test to those of chromosomal microarray analysis (CMA) and other tests available to our laboratory. In addition, we identify new candidate genes for ASD identified in a cohort of ASD-diagnosed patients. METHOD: We describe the use of MLPA, CMA, and karyotyping to detect CNV in 92 ASD patients and evaluate their clinical significance. RESULT: Pathogenic and likely pathogenic mutations were identified by CMA in eight (8.07% of the studied cohort) and 12 (13.04%) ASD patients, respectively, and in eight (8.07%) and four (4.35%) patients, respectively, by MLPA. The detected mutations include the 22q13.3 deletion, which was attributed to ring chromosome 22 formation based on karyotyping. CMA revealed a total of 91 rare CNV in 55 patients: eight pathogenic, 15 designated variants of unknown significance (VOUS)-likely pathogenic, 10 VOUS-uncertain, and 58 VOUS-likely benign or benign. MLPA revealed 18 CNV in 18 individuals: eight pathogenic, four designated as VOUS-likely pathogenic, and six designated as VOUS-likely benign/benign. Rare CNVs were detected in 17 (58.62%) out of 29 females and 38 (60.32%) out of 63 males in the cohort. Two genes, DOCK8 and PARK2, were found to be overlapped by CNV designated pathogenic, VOUS-likely pathogenic, or VOUS-uncertain in multiple patients. Moreover, the studied ASD cohort exhibited significant (p < 0.05) enrichment of duplications encompassing DOCK8. CONCLUSION: Multiplex ligation-dependent probe amplification and CMA yielded concordant results for 12 patients bearing CNV designated pathogenic or VOUS-likely pathogenic. Unambiguous diagnoses were achieved for eight patients (corresponding to 8.7% of the total studied population) by both MLPA and CMA, for one (1.09%) patient by karyotyping, and for one (1.09%) patient by FRAXA testing. MLPA and CMA thus achieved identical reliability with respect to clinically relevant findings. As such, MLPA could be useful as a fast and inexpensive test in patients with syndromic autism. The detection rate of potentially pathogenic variants (VOUS-likely pathogenic) achieved by CMA was higher than that for MLPA (13.04% vs. 4.35%). However, there was no corresponding difference in the rate of unambiguous diagnoses of ASD patients. In addition, the results obtained suggest that DOCK8 may play a role in the etiology of ASD.

9.
J Clin Neurosci ; 59: 337-339, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30446360

ABSTRACT

Biallelic pathogenic variants in FA2H gene have been repeatedly described as a cause of hereditary spastic paraplegia (HSP) type35 (SPG35). Targeted massive parallel sequencing (MPS) of the HSP genes panel revealed a novel homozygous variant c.130C > T (p.P44S) in the FA2H gene in the 30-year-old patient presenting with spastic paraplegia. The patient originated form the Czech minority in Romania. The patient manifests typical clinical signs for SPG35 (youth onset gait impairment, progressive spastic paraparesis on lower limbs, dysarthria, white matter changes in MRI).


Subject(s)
Mixed Function Oxygenases/genetics , Mutation , Spastic Paraplegia, Hereditary/genetics , Adult , Genes, Recessive , Homozygote , Humans , Male , Pedigree , Spastic Paraplegia, Hereditary/pathology
10.
Am J Med Genet A ; 176(6): 1438-1442, 2018 06.
Article in English | MEDLINE | ID: mdl-29696806

ABSTRACT

Microdeletions of 17q24.2-q24.3 have been described in several patients with developmental and speech delay, growth retardation, and other features. The relatively large size and limited overlap of the deletions complicate the genotype-phenotype correlation. We identified a girl with intellectual disability, growth retardation, dysmorphic features, and a de novo 2.8 Mb long deletion of 17q24.2-q24.3. Her phenotype was strikingly similar to one previously described boy with Dubowitz syndrome (MIM 223370) and a de novo 3.9 Mb long deletion encompassing the deletion of our patient. In addition, both patients had the shortest telomeres among normal age-matched controls. Our review of all 17q24.2-q24.3 deletion patients revealed additional remarkable phenotypic features shared by the patients, some of which have consequences for their management. Proposed novel genotype-phenotype correlations based on new literature information on the region include the role of PSMD12 and BPTF, the genes recently associated with syndromic neurodevelopmental disorders, and a possible role of the complex topologically associated domain structure of the region, which may explain some of the phenotypic discrepancies observed between patients with similar but not identical deletions. Nevertheless, although different diagnoses including the Dubowitz, Nijmegen breakage (MIM 251260), Silver-Russell (MIM 180860), or Myhre (MIM 139210) syndromes were originally considered in the 17q24.2-q24.3 deletion patients, they clearly belong to one diagnostic entity defined by their deletions and characterized especially by developmental delay, specific facial dysmorphism, abnormalities of extremities and other phenotypes, and possibly also short telomere length.


Subject(s)
Chromosomes, Human, Pair 17 , Developmental Disabilities/genetics , Telomere , Child , Chromosome Deletion , Chromosomes, Human, Pair 17/genetics , Developmental Disabilities/etiology , Eczema/etiology , Face/abnormalities , Facies , Female , Fibromatosis, Gingival/genetics , Growth Disorders/etiology , Humans , Hypertrichosis/genetics , Intellectual Disability/etiology , Microcephaly/etiology , Phenotype
11.
J Hum Genet ; 63(7): 803-810, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29636544

ABSTRACT

Approximately 20 cases of genome-wide uniparental disomy or diploidy (GWUPD) as mosaicism have previously been reported. We present the case of an 11-year-old deaf girl with a paternal uniparental diploidy or isodisomy with a genome-wide loss of heterozygosity (LOH). The patient was originally tested for non-syndromic deafness, and the novel variant p.V234I in the ESRRB gene was found in a homozygous state. Our female proband is the seventh patient diagnosed with GWUPD at a later age and is probably the least affected of the seven, as she has not yet presented any malignancy. Most, if not all, reported patients with GWUPD whose clinical details have been published have developed malignancy, and some of those patient developed malignancy several times. Therefore, our patient has a high risk of malignancy and is carefully monitored by a specific outpatient pediatric oncology program. This observation seems to be novel and unique in a GWUPD patient. Our study is also unique as it not only provides very detailed documentation of the genomic situations of various tissues but also reports differences in the mosaic ratios between the blood and saliva, as well as a normal biparental allelic situation in the skin and biliary duct. Additionally, we were able to demonstrate that the mosaic ratio in the blood remained stable even after 3 years and has not changed over a longer period.


Subject(s)
Deafness/genetics , Diploidy , Mosaicism , Mutation , Receptors, Estrogen/genetics , Uniparental Disomy , Base Sequence , Child , Deafness/diagnosis , Deafness/physiopathology , Female , Gene Expression , Genome-Wide Association Study , Genomic Instability , Humans , Loss of Heterozygosity , Pedigree , Sequence Analysis, DNA
12.
Genet Test Mol Biomarkers ; 22(2): 127-134, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29425068

ABSTRACT

INTRODUCTION: Hearing loss (HL) is the most common sensory deficit in humans. HL is an extremely heterogeneous condition presenting most frequently as a nonsyndromic (NS) condition inherited in an autosomal recessive (AR) pattern, termed DFNB. Mutations affecting the STRC gene cause DFNB type 16. Various types of mutations within the STRC gene have been reported from the U.S. and German populations, but no information about the relative contribution of STRC mutations to NSHL-AR among Czech patients is available. METHODS AND PATIENTS: Two hundred and eighty-eight patients with prelingual NSHL, either sporadic (n = 207) or AR (n = 81), who had been previously tested negative for the mutations affecting the GJB2 gene, were included in the study. These patients were tested for STRC mutations by a quantitative comparative fluorescent polymerase chain reaction (QF-PCR) assay. In addition, 31 of the 81 NSHL-AR patients were analyzed by massively parallel sequencing using one of two different gene panels: 23 patients were analyzed by multiplex-ligation probe amplification (MLPA); and 9 patients by SNP microarrays. RESULTS: Causal mutations affecting the STRC gene (including copy number variations [CNVs] and point mutations) were found in 5.5% of all patients and 13.6% of the 81 patients in the subgroup with NSHL-AR. CONCLUSION: Our results provide strong evidence that STRC gene mutations are an important cause of NSHL-AR in Czech HL patients and are probably the second most common cause of DFNB. Large CNVs were more frequent than point mutations and it is reasonable to test them first by a QF-PCR method-a simple, accessible, and efficient tool for STRC CNV detection, which can be combined by MLPA.


Subject(s)
Hearing Loss/genetics , Membrane Proteins/genetics , Mutation , Czech Republic , Humans , Intercellular Signaling Peptides and Proteins , Polymerase Chain Reaction , Sequence Deletion
14.
Mol Biol Rep ; 44(6): 441, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29019065

ABSTRACT

There was a spacing error in the initial online publication, and there were errors in the Acknowledgments section. The original article has been updated.

15.
Mol Biol Rep ; 44(6): 435-440, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28849415

ABSTRACT

A bilaterally blind woman, with a three generation family history of autosomal dominant congenital cataracts, variably associated with iris colobomata and microcornea, sought preconception genetic consultation. Whole-exome sequencing was performed in three affected family members, one unaffected first degree relative, and one spouse. The sequence variant c.168C>G; p.(Tyr56∗) in CRYGD, previously reported as pathogenic, and a novel mutation c.809C>A; p.(Ser270Tyr) in MAF, were identified in two affected family members; the grandmother, and half-brother of the proband. The proband inherited only the MAF mutation, whereas her clinically unaffected sister had the CRYGD change. In silico analysis supported a pathogenic role of p.(Ser270Tyr) in MAF, which was absent from publicly available whole-exome datasets, and 1161 Czech individuals. The frequency of CRYGD p.(Tyr56∗) in the ExAC dataset was higher than the estimated incidence of congenital cataract in the general population. Our study highlights that patients with genetically heterogeneous conditions may exhibit rare variants in more than one disease-associated gene, warranting caution with data interpretation, and supporting parallel screening of all genes known to harbour pathogenic mutations for a given phenotype. The pathogenicity of sequence variants previously reported as cataract-causing may require re-assessment in light of recently released datasets of human genomic variation.


Subject(s)
Cataract/genetics , Proto-Oncogene Proteins c-maf/genetics , gamma-Crystallins/genetics , Adult , Cataract/congenital , DNA Mutational Analysis/methods , Exome/genetics , Female , Genes, Dominant/genetics , Humans , Male , Mutation/genetics , Pedigree , Phenotype , Proto-Oncogene Proteins c-maf/metabolism , Exome Sequencing/methods , gamma-Crystallins/metabolism
16.
Blood ; 129(20): 2771-2781, 2017 05 18.
Article in English | MEDLINE | ID: mdl-28331056

ABSTRACT

We used the genomic breakpoint between BCR and ABL1 genes for the DNA-based monitoring of minimal residual disease (MRD) in 48 patients with childhood acute lymphoblastic leukemia (ALL). Comparing the results with standard MRD monitoring based on immunoglobulin/T-cell receptor (Ig/TCR) gene rearrangements and with quantification of IKZF1 deletion, we observed very good correlation for the methods in a majority of patients; however, >20% of children (25% [8/32] with minor and 12.5% [1/8] with major-BCR-ABL1 variants in the consecutive cohorts) had significantly (>1 log) higher levels of BCR-ABL1 fusion than Ig/TCR rearrangements and/or IKZF1 deletion. We performed cell sorting of the diagnostic material and assessed the frequency of BCR-ABL1-positive cells in various hematopoietic subpopulations; 12% to 83% of non-ALL B lymphocytes, T cells, and/or myeloid cells harbored the BCR-ABL1 fusion in patients with discrepant MRD results. The multilineage involvement of the BCR-ABL1-positive clone demonstrates that in some patients diagnosed with BCR-ABL1-positive ALL, a multipotent hematopoietic progenitor is affected by the BCR-ABL1 fusion. These patients have BCR-ABL1-positive clonal hematopoiesis resembling a chronic myeloid leukemia (CML)-like disease manifesting in "lymphoid blast crisis." The biological heterogeneity of BCR-ABL1-positive ALL may impact the patient outcomes and optimal treatment (early stem cell transplantation vs long-term administration of tyrosine-kinase inhibitors) as well as on MRD testing. Therefore, we recommend further investigations on CML-like BCR-ABL1-positive ALL.


Subject(s)
Chromosome Breakage , Fusion Proteins, bcr-abl/genetics , Genome, Human , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Child , Child, Preschool , Gene Deletion , Hematopoiesis , Humans , Ikaros Transcription Factor/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood , Leukocyte Count , Neoplasm, Residual/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood , Receptors, Antigen, T-Cell/genetics , Treatment Outcome
18.
Sci Rep ; 7: 39710, 2017 01 05.
Article in English | MEDLINE | ID: mdl-28054583

ABSTRACT

Common variable immunodeficiency (CVID) is a heterogeneous group of diseases. Our aim was to define sub-groups of CVID patients with similar phenotypes and clinical characteristics. Using eight-color flow cytometry, we analyzed both B- and T-cell phenotypes in a cohort of 88 CVID patients and 48 healthy donors. A hierarchical clustering of probability binning "bins" yielded a separate cluster of 22 CVID patients with an abnormal phenotype. We showed coordinated proportional changes in naïve CD4+ T-cells (decreased), intermediate CD27- CD28+ CD4+ T-cells (increased) and CD21low B-cells (increased) that were stable for over three years. Moreover, the lymphocytes' immunophenotype in this patient cluster exhibited features of profound immunosenescence and chronic activation. Thrombocytopenia was only found in this cluster (36% of cases, manifested as Immune Thrombocytopenia (ITP) or Evans syndrome). Clinical complications more frequently found in these patients include lung fibrosis (in 59% of cases) and bronchiectasis (55%). The degree of severity of these symptoms corresponded to more deviation from normal levels with respect to CD21low B-cells, naïve CD4+ and CD27− CD28+ CD4+ T-cells. Next-generation sequencing did not reveal any common genetic background. We delineate a subgroup of CVID patients with activated and immunosenescent immunophenotype of lymphocytes and distinct set of clinical complications without common genetic background.


Subject(s)
B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Common Variable Immunodeficiency/immunology , Lung/pathology , Purpura, Thrombocytopenic, Idiopathic/immunology , Adolescent , Adult , Aged , Cell Separation , Cohort Studies , Female , Fibrosis , Flow Cytometry , Humans , Immunosenescence , Lymphocyte Activation , Male , Middle Aged , Phenotype , Young Adult
19.
J Hum Genet ; 62(3): 431-435, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28003645

ABSTRACT

Hereditary motor and sensory neuropathy-type Lom (HMSNL), also known as CMT4D, a demyelinating neuropathy with late-onset deafness is an autosomal recessive disorder threatening Roma population worldwide. The clinical phenotype was reported in several case reports before the gene discovery. HMSNL is caused by a homozygous founder mutation p.Arg148* in the N-Myc downstream-regulated gene 1. Here, we report findings from the Czech Republic, where HMSNL was found in 12 Czech patients from eight families. In these 12 patients, 11 of the causes were due to p.Arg148* mutation inherited from both parents by the autosomal recessive mechanism. But in one case, the recessive mutation was inherited only from one parent (father) and unmasked owing to an uniparental isodisomy of the entire chromosome eight. The inherited peripheral neuropathy owing to an isodisomy of the whole chromosome pointed to an interesting, less frequent possibility of recessive disease and complications with genetic counseling.


Subject(s)
Cell Cycle Proteins/genetics , Charcot-Marie-Tooth Disease/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mutation , Refsum Disease/genetics , Roma , Uniparental Disomy , Adult , Age of Onset , Charcot-Marie-Tooth Disease/diagnosis , Charcot-Marie-Tooth Disease/ethnology , Charcot-Marie-Tooth Disease/physiopathology , Child , Child, Preschool , Chromosomes, Human, Pair 8/chemistry , Czech Republic , Deafness/physiopathology , Female , Founder Effect , Gene Expression , Genes, Recessive , Genetic Counseling , Genotype , Humans , Male , Phenotype , Refsum Disease/diagnosis , Refsum Disease/ethnology , Refsum Disease/physiopathology
20.
Neuropsychiatr Dis Treat ; 12: 2367-2372, 2016.
Article in English | MEDLINE | ID: mdl-27695335

ABSTRACT

Myotonic dystrophy type 1 (DM1) belongs to the broad spectrum of genetic disorders associated with autism spectrum disorders (ASD). ASD were reported predominantly in congenital and early childhood forms of DM1. We describe dizygotic twin boys with ASD who were referred for routine laboratory genetic testing and in whom karyotyping, FMR1 gene testing, and single nucleotide polymorphism array analysis yielded negative results. The father of the boys was later diagnosed with suspected DM1, and testing revealed characteristic DMPK gene expansions in his genome as well as in the genomes of both twins and their elder brother, who also suffered from ASD. In accord with previous reports on childhood forms of DM1, our patients showed prominent neuropsychiatric phenotypes characterized especially by hypotonia, developmental and language delay, emotional and affective lability, lowered adaptability, and social withdrawal. The experience with this family and multiple literature reports of ASD in DM1 on the one side but the lack of literature data on the frequency of DMPK gene expansions in ASD patients on the other side prompted us to screen the DMPK gene in a sample of 330 patients with ASD who were first seen by a geneticist before they were 10 years of age, before the muscular weakness, which may signal DM1, usually becomes obvious. The absence of any DMPK gene expansions in this cohort indicates that targeted DMPK gene testing can be recommended only in ASD patients with specific symptoms or family history suggestive of DM1.

SELECTION OF CITATIONS
SEARCH DETAIL
...