Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Mol Cell Proteomics ; 22(2): 100495, 2023 02.
Article in English | MEDLINE | ID: mdl-36634736

ABSTRACT

We have previously documented that in liver cells, the multifunctional protein scaffold p62/SQSTM1 is closely associated with IκBα, an inhibitor of the transcriptional activator NF-κB. Such an intimate p62-IκBα association we now document leads to a marked 18-fold proteolytic IκBα-stabilization, enabling its nuclear entry and termination of the NF-κB-activation cycle. In p62-/--cells, such termination is abrogated resulting in the nuclear persistence and prolonged activation of NF-κB following inflammatory stimuli. Utilizing various approaches both classic (structural deletion, site-directed mutagenesis) as well as novel (in-cell chemical crosslinking), coupled with proteomic analyses, we have defined the precise structural hotspots of p62-IκBα association. Accordingly, we have identified such IκBα hotspots to reside around N-terminal (K38, K47, and K67) and C-terminal (K238/C239) residues in its fifth ankyrin repeat domain. These sites interact with two hotspots in p62: One in its PB-1 subdomain around K13, and the other comprised of a positively charged patch (R183/R186/K187/K189) between its ZZ- and TB-subdomains. APEX proximity analyses upon IκBα-cotransfection of cells with and without p62 have enabled the characterization of the p62 influence on IκBα-protein-protein interactions. Interestingly, consistent with p62's capacity to proteolytically stabilize IκBα, its presence greatly impaired IκBα's interactions with various 20S/26S proteasomal subunits. Furthermore, consistent with p62 interaction with IκBα on an interface opposite to that of its NF-κB-interacting interface, p62 failed to significantly affect IκBα-NF-κB interactions. These collective findings together with the known dynamic p62 nucleocytoplasmic shuttling leads us to speculate that it may be involved in "piggy-back" nuclear transport of IκBα following its NF-κB-elicited transcriptional activation and de novo synthesis, required for termination of the NF-κB-activation cycle. Consequently, mice carrying a liver-specific deletion of p62-residues 68 to 252 reveal age-dependent-enhanced liver inflammation. Our findings reveal yet another mode of p62-mediated pathophysiologically relevant regulation of NF-κB.


Subject(s)
NF-KappaB Inhibitor alpha , NF-kappa B , Sequestosome-1 Protein , Animals , Mice , Cross-Linking Reagents/chemistry , Cross-Linking Reagents/pharmacology , I-kappa B Proteins/metabolism , NF-kappa B/metabolism , NF-KappaB Inhibitor alpha/metabolism , Proteomics , Sequestosome-1 Protein/chemistry , Sequestosome-1 Protein/metabolism , Signal Transduction
2.
J Biol Chem ; 298(9): 102361, 2022 09.
Article in English | MEDLINE | ID: mdl-35963430

ABSTRACT

TRIO encodes a cytoskeletal regulatory protein with three catalytic domains-two guanine exchange factor (GEF) domains, GEF1 and GEF2, and a kinase domain-as well as several accessory domains that have not been extensively studied. Function-damaging variants in the TRIO gene are known to be enriched in individuals with neurodevelopmental disorders (NDDs). Disease variants in the GEF1 domain or the nine adjacent spectrin repeats (SRs) are enriched in NDDs, suggesting that dysregulated GEF1 activity is linked to these disorders. We provide evidence here that the Trio SRs interact intramolecularly with the GEF1 domain to inhibit its enzymatic activity. We demonstrate that SRs 6-9 decrease GEF1 catalytic activity both in vitro and in cells and show that NDD-associated variants in the SR8 and GEF1 domains relieve this autoinhibitory constraint. Our results from chemical cross-linking and bio-layer interferometry indicate that the SRs primarily contact the pleckstrin homology region of the GEF1 domain, reducing GEF1 binding to the small GTPase Rac1. Together, our findings reveal a key regulatory mechanism that is commonly disrupted in multiple NDDs and may offer a new target for therapeutic intervention for TRIO-associated NDDs.


Subject(s)
Monomeric GTP-Binding Proteins , Neurodevelopmental Disorders , Cytoskeletal Proteins/metabolism , Cytoskeleton/metabolism , Guanine/metabolism , Humans , Monomeric GTP-Binding Proteins/metabolism , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Spectrin/metabolism
3.
Chem Sci ; 13(22): 6599-6609, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35756531

ABSTRACT

Chemical probes for chromatin reader proteins are valuable tools for investigating epigenetic regulatory mechanisms and evaluating whether the target of interest holds therapeutic potential. Developing potent inhibitors for the plant homeodomain (PHD) family of methylation readers remains a difficult task due to the charged, shallow and extended nature of the histone binding site that precludes effective engagement of conventional small molecules. Herein, we describe the development of novel proximity-reactive cyclopeptide inhibitors for PHD3-a trimethyllysine reader domain of histone demethylase KDM5A. Guided by the PHD3-histone co-crystal structure, we designed a sidechain-to-sidechain linking strategy to improve peptide proteolytic stability whilst maintaining binding affinity. We have developed an operationally simple solid-phase macrocyclization pathway, capitalizing on the inherent reactivity of the dimethyllysine ε-amino group to generate scaffolds bearing charged tetraalkylammonium functionalities that effectively engage the shallow aromatic 'groove' of PHD3. Leveraging a surface-exposed lysine residue on PHD3 adjacent to the ligand binding site, cyclic peptides were rendered covalent through installation of an arylsulfonyl fluoride warhead. The resulting lysine-reactive cyclic peptides demonstrated rapid and efficient labeling of the PHD3 domain in HEK293T lysates, showcasing the feasibility of employing proximity-induced reactivity for covalent labeling of this challenging family of reader domains.

4.
PLoS Biol ; 19(10): e3001425, 2021 10.
Article in English | MEDLINE | ID: mdl-34634033

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection causes Coronavirus Disease 2019 (COVID-19), a pandemic that seriously threatens global health. SARS-CoV-2 propagates by packaging its RNA genome into membrane enclosures in host cells. The packaging of the viral genome into the nascent virion is mediated by the nucleocapsid (N) protein, but the underlying mechanism remains unclear. Here, we show that the N protein forms biomolecular condensates with viral genomic RNA both in vitro and in mammalian cells. While the N protein forms spherical assemblies with homopolymeric RNA substrates that do not form base pairing interactions, it forms asymmetric condensates with viral RNA strands. Cross-linking mass spectrometry (CLMS) identified a region that drives interactions between N proteins in condensates, and deletion of this region disrupts phase separation. We also identified small molecules that alter the size and shape of N protein condensates and inhibit the proliferation of SARS-CoV-2 in infected cells. These results suggest that the N protein may utilize biomolecular condensation to package the SARS-CoV-2 RNA genome into a viral particle.


Subject(s)
COVID-19/virology , Coronavirus Nucleocapsid Proteins/metabolism , SARS-CoV-2/metabolism , Viral Genome Packaging/physiology , Animals , COVID-19/metabolism , Cell Line, Tumor , Chlorocebus aethiops , Genome, Viral , Genomics , HEK293 Cells , Humans , Nucleocapsid Proteins/genetics , Phosphoproteins/metabolism , Protein Domains , RNA, Viral/genetics , SARS-CoV-2/genetics , Vero Cells
5.
J Biol Chem ; 297(5): 101276, 2021 11.
Article in English | MEDLINE | ID: mdl-34619147

ABSTRACT

Unique among metazoan repressive histone methyltransferases, G9a and GLP, which chiefly target histone 3 lysine 9 (H3K9), require dimerization for productive H3K9 mono (me1)- and dimethylation (me2) in vivo. Intriguingly, even though each enzyme can independently methylate H3K9, the predominant active form in vivo is a heterodimer of G9a and GLP. How dimerization influences the central H3K9 methyl binding ("reading") and deposition ("writing") activity of G9a and GLP and why heterodimerization is essential in vivo remains opaque. Here, we examine the H3K9me "reading" and "writing" activities of defined, recombinantly produced homo- and heterodimers of G9a and GLP. We find that both reading and writing are significantly enhanced in the heterodimer. Compared with the homodimers, the heterodimer has higher recognition of H3K9me2, and a striking ∼10-fold increased turnover rate for nucleosomal substrates under multiple turnover conditions, which is not evident on histone tail peptide substrates. Cross-linking Mass Spectrometry suggests that differences between the homodimers and the unique activity of the heterodimer may be encoded in altered ground state conformations, as each dimer displays different domain contacts. Our results indicate that heterodimerization may be required to relieve autoinhibition of H3K9me reading and chromatin methylation evident in G9a and GLP homodimers. Relieving this inhibition may be particularly important in early differentiation when large tracts of H3K9me2 are typically deposited by G9a-GLP, which may require a more active form of the enzyme.


Subject(s)
Histocompatibility Antigens/chemistry , Histone-Lysine N-Methyltransferase/chemistry , Protein Multimerization , Histocompatibility Antigens/genetics , Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Methylation
6.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Article in English | MEDLINE | ID: mdl-34380736

ABSTRACT

RAS proteins are molecular switches that interact with effector proteins when bound to guanosine triphosphate, stimulating downstream signaling in response to multiple stimuli. Although several canonical downstream effectors have been extensively studied and tested as potential targets for RAS-driven cancers, many of these remain poorly characterized. In this study, we undertook a biochemical and structural approach to further study the role of Sin1 as a RAS effector. Sin1 interacted predominantly with KRAS isoform 4A in cells through an atypical RAS-binding domain that we have characterized by X-ray crystallography. Despite the essential role of Sin1 in the assembly and activity of mTORC2, we find that the interaction with RAS is not required for these functions. Cells and mice expressing a mutant of Sin1 that is unable to bind RAS are proficient for activation and assembly of mTORC2. Our results suggest that Sin1 is a bona fide RAS effector that regulates downstream signaling in an mTORC2-independent manner.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Adaptor Proteins, Signal Transducing/genetics , Gene Expression Regulation/physiology , HEK293 Cells , Humans , Mass Spectrometry , Mechanistic Target of Rapamycin Complex 2/genetics , Models, Molecular , Protein Conformation , Protein Isoforms , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction
7.
bioRxiv ; 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-32995779

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes COVID-19, a pandemic that seriously threatens global health. SARS-CoV-2 propagates by packaging its RNA genome into membrane enclosures in host cells. The packaging of the viral genome into the nascent virion is mediated by the nucleocapsid (N) protein, but the underlying mechanism remains unclear. Here, we show that the N protein forms biomolecular condensates with viral genomic RNA both in vitro and in mammalian cells. Phase separation is driven, in part, by hydrophobic and electrostatic interactions. While the N protein forms spherical assemblies with unstructured RNA, it forms asymmetric condensates with viral RNA strands that contain secondary structure elements. Cross-linking mass spectrometry identified a region that forms interactions between N proteins in condensates, and truncation of this region disrupts phase separation. We also identified small molecules that alter the formation of N protein condensates. These results suggest that the N protein may utilize biomolecular condensation to package the SARS-CoV-2 RNA genome into a viral particle.

8.
Mol Cell Proteomics ; 19(12): 1968-1986, 2020 12.
Article in English | MEDLINE | ID: mdl-32912968

ABSTRACT

Mallory-Denk-bodies (MDBs) are hepatic protein aggregates associated with inflammation both clinically and in MDB-inducing models. Similar protein aggregation in neurodegenerative diseases also triggers inflammation and NF-κB activation. However, the precise mechanism that links protein aggregation to NF-κB-activation and inflammatory response remains unclear. Herein we find that treating primary hepatocytes with MDB-inducing agents (N-methylprotoporphyrin (NMPP), protoporphyrin IX (PPIX), or Zinc-protoporphyrin IX (ZnPP)) elicited an IκBα-loss with consequent NF-κB activation. Four known mechanisms of IκBα-loss i.e. the canonical ubiquitin-dependent proteasomal degradation (UPD), autophagic-lysosomal degradation, calpain degradation and translational inhibition, were all probed and excluded. Immunofluorescence analyses of ZnPP-treated cells coupled with 8 M urea/CHAPS-extraction revealed that this IκBα-loss was due to its sequestration along with IκBß into insoluble aggregates, thereby releasing NF-κB. Through affinity pulldown, proximity biotinylation by antibody recognition, and other proteomic analyses, we verified that NF-κB subunit p65, which stably interacts with IκBα under normal conditions, no longer binds to it upon ZnPP-treatment. Additionally, we identified 10 proteins that interact with IκBα under baseline conditions, aggregate upon ZnPP-treatment, and maintain the interaction with IκBα after ZnPP-treatment, either by cosequestering into insoluble aggregates or through a different mechanism. Of these 10 proteins, the nucleoporins Nup153 and Nup358/RanBP2 were identified through RNA-interference, as mediators of IκBα-nuclear import. The concurrent aggregation of IκBα, NUP153, and RanBP2 upon ZnPP-treatment, synergistically precluded the nuclear entry of IκBα and its consequent binding and termination of NF-κB activation. This novel mechanism may account for the protein aggregate-induced inflammation observed in liver diseases, thus identifying novel targets for therapeutic intervention. Because of inherent commonalities this MDB cell model is a bona fide protoporphyric model, making these findings equally relevant to the liver inflammation associated with clinical protoporphyria.


Subject(s)
I-kappa B Proteins/metabolism , Inflammation/pathology , Liver/metabolism , Liver/pathology , NF-kappa B/metabolism , Protein Aggregates , Active Transport, Cell Nucleus/drug effects , Animals , Autophagy/drug effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , HEK293 Cells , HeLa Cells , Hep G2 Cells , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Liver/drug effects , Male , Mice, Inbred C57BL , Mice, Knockout , Nuclear Pore Complex Proteins/metabolism , Protein Aggregates/drug effects , Protein Binding/drug effects , Protein Multimerization/drug effects , Protoporphyrins/pharmacology , RNA, Small Interfering/metabolism , Sequestosome-1 Protein/metabolism , Solubility
9.
Elife ; 92020 08 21.
Article in English | MEDLINE | ID: mdl-32820719

ABSTRACT

Membrane proteins with multiple transmembrane domains play critical roles in cell physiology, but little is known about the machinery coordinating their biogenesis at the endoplasmic reticulum. Here we describe a ~ 360 kDa ribosome-associated complex comprising the core Sec61 channel and five accessory factors: TMCO1, CCDC47 and the Nicalin-TMEM147-NOMO complex. Cryo-electron microscopy reveals a large assembly at the ribosome exit tunnel organized around a central membrane cavity. Similar to protein-conducting channels that facilitate movement of transmembrane segments, cytosolic and luminal funnels in TMCO1 and TMEM147, respectively, suggest routes into the central membrane cavity. High-throughput mRNA sequencing shows selective translocon engagement with hundreds of different multi-pass membrane proteins. Consistent with a role in multi-pass membrane protein biogenesis, cells lacking different accessory components show reduced levels of one such client, the glutamate transporter EAAT1. These results identify a new human translocon and provide a molecular framework for understanding its role in multi-pass membrane protein biogenesis.


Cell membranes are structures that separate the interior of the cell from its environment and determine the cell's shape and the structure of its internal compartments. Nearly 25% of human genes encode transmembrane proteins that span the entire membrane from one side to the other, helping the membrane perform its roles. Transmembrane proteins are synthesized by ribosomes ­ protein-making machines ­ that are on the surface of a cell compartment called the endoplasmic reticulum. As the new protein is made by the ribosome, it enters the endoplasmic reticulum membrane where it folds into the correct shape. This process is best understood for proteins that span the membrane once. Despite decades of work, however, much less is known about how multi-pass proteins that span the membrane multiple times are made. A study from 2017 showed that a protein called TMCO1 is related to a group of proteins involved in making membrane proteins. TMCO1 has been linked to glaucoma, and mutations in it cause cerebrofaciothoracic dysplasia, a human disease characterized by severe intellectual disability, distinctive facial features, and bone abnormalities. McGilvray, Anghel et al. ­ including several of the researchers involved in the 2017 study ­ wanted to determine what TMCO1 does in the cell and begin to understand its role in human disease. McGilvray, Anghel et al. discovered that TMCO1, together with other proteins, is part of a new 'translocon' ­ a group of proteins that transports proteins into the endoplasmic reticulum membrane. Using a combination of biochemical, genetic and structural techniques, McGilvray, Anghel et al. showed that the translocon interacts with ribosomes that are synthesizing multi-pass proteins. The experiments revealed that the translocon is required for the production of a multi-pass protein called EAAT1, and it provides multiple ways for proteins to be inserted into and folded within the membrane. The findings of McGilvray, Anghel et al. reveal a previously unknown cellular machinery which may be involved in the production of hundreds of human multi-pass proteins. This work provides a framework for understanding how these proteins are correctly made in the membrane. Additionally, it suggests that human diseases caused by mutations in TMCO1 result from a defect in the production of multi-pass membrane proteins.


Subject(s)
Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Protein Biosynthesis , Ribosomes/metabolism , SEC Translocation Channels/metabolism , Cell Line , Cryoelectron Microscopy , Humans , Protein Domains
10.
Nature ; 582(7810): 115-118, 2020 06.
Article in English | MEDLINE | ID: mdl-32494070

ABSTRACT

During cell division, remodelling of the nuclear envelope enables chromosome segregation by the mitotic spindle1. The reformation of sealed nuclei requires ESCRTs (endosomal sorting complexes required for transport) and LEM2, a transmembrane ESCRT adaptor2-4. Here we show how the ability of LEM2 to condense on microtubules governs the activation of ESCRTs and coordinated spindle disassembly. The LEM motif of LEM2 binds BAF, conferring on LEM2 an affinity for chromatin5,6, while an adjacent low-complexity domain (LCD) promotes LEM2 phase separation. A proline-arginine-rich sequence within the LCD binds to microtubules and targets condensation of LEM2 to spindle microtubules that traverse the nascent nuclear envelope. Furthermore, the winged-helix domain of LEM2 activates the ESCRT-II/ESCRT-III hybrid protein CHMP7 to form co-oligomeric rings. Disruption of these events in human cells prevented the recruitment of downstream ESCRTs, compromised spindle disassembly, and led to defects in nuclear integrity and DNA damage. We propose that during nuclear reassembly LEM2 condenses into a liquid-like phase and coassembles with CHMP7 to form a macromolecular O-ring seal at the confluence between membranes, chromatin and the spindle. The properties of LEM2 described here, and the homologous architectures of related inner nuclear membrane proteins7,8, suggest that phase separation may contribute to other critical envelope functions, including interphase repair8-13 and chromatin organization14-17.


Subject(s)
Endosomal Sorting Complexes Required for Transport/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Nuclear Envelope/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Anaphase , Chromatin/metabolism , DNA Damage , DNA-Binding Proteins/metabolism , HeLa Cells , Humans , Microtubules/chemistry , Microtubules/metabolism , Nuclear Envelope/chemistry , Spindle Apparatus/metabolism
11.
Methods ; 159-160: 4-22, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30890443

ABSTRACT

Integrative structural biology combines data from multiple experimental techniques to generate complete structural models for the biological system of interest. Most commonly cross-linking data sets are employed alongside electron microscopy maps, crystallographic structures, and other data by computational methods that integrate all known information and produce structural models at a level of resolution that is appropriate to the input data. The precision of these modelled solutions is limited by the sparseness of cross-links observed, the length of the cross-linking reagent, the ambiguity arisen from the presence of multiple copies of the same protein, and structural and compositional heterogeneity. In recent years integrative structural biology approaches have been successfully applied to a range of RNA polymerase II complexes. Here we will provide a general background to integrative structural biology, a description of how it should be practically implemented and how it has furthered our understanding of the biology of large transcriptional assemblies. Finally, in the context of recent breakthroughs in microscope and direct electron detector technology, where increasingly EM is capable of resolving structural features directly without the aid of other structural techniques, we will discuss the future role of integrative structural techniques.


Subject(s)
Computational Biology/methods , Models, Molecular , RNA Polymerase II/metabolism , Transcription Initiation, Genetic , Animals , Cryoelectron Microscopy/methods , Eukaryota/genetics , Eukaryota/metabolism , Humans , Mass Spectrometry/methods , Molecular Conformation , Protein Conformation
12.
Nat Commun ; 10(1): 94, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30626866

ABSTRACT

Histone demethylase KDM5A removes methyl marks from lysine 4 of histone H3 and is often overexpressed in cancer. The in vitro demethylase activity of KDM5A is allosterically enhanced by binding of its product, unmodified H3 peptides, to its PHD1 reader domain. However, the molecular basis of this allosteric enhancement is unclear. Here we show that saturation of the PHD1 domain by the H3 N-terminal tail peptides stabilizes binding of the substrate to the catalytic domain and improves the catalytic efficiency of demethylation. When present in saturating concentrations, differently modified H3 N-terminal tail peptides have a similar effect on demethylation. However, they vary greatly in their affinity towards the PHD1 domain, suggesting that H3 modifications can tune KDM5A activity. Furthermore, hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) experiments reveal conformational changes in the allosterically enhanced state. Our findings may enable future development of anti-cancer therapies targeting regions involved in allosteric regulation.


Subject(s)
Histones/metabolism , Retinoblastoma-Binding Protein 2/metabolism , Animals , Catalytic Domain , Models, Molecular , Protein Conformation , Protein Domains , Retinoblastoma-Binding Protein 2/genetics , Sf9 Cells
13.
Cell Host Microbe ; 24(4): 542-557.e9, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30308158

ABSTRACT

The dicistrovirus, Cricket paralysis virus (CrPV) encodes an RNA interference (RNAi) suppressor, 1A, which modulates viral virulence. Using the Drosophila model, we combined structural, biochemical, and virological approaches to elucidate the strategies by which CrPV-1A restricts RNAi immunity. The atomic resolution structure of CrPV-1A uncovered a flexible loop that interacts with Argonaute 2 (Ago-2), thereby inhibiting Ago-2 endonuclease-dependent immunity. Mutations disrupting Ago-2 binding attenuates viral pathogenesis in wild-type but not Ago-2-deficient flies. CrPV-1A also contains a BC-box motif that enables the virus to hijack a host Cul2-Rbx1-EloBC ubiquitin ligase complex, which promotes Ago-2 degradation and virus replication. Our study uncovers a viral-based dual regulatory program that restricts antiviral immunity by direct interaction with and modulation of host proteins. While the direct inhibition of Ago-2 activity provides an efficient mechanism to establish infection, the recruitment of a ubiquitin ligase complex enables CrPV-1A to amplify Ago-2 inactivation to restrict further antiviral RNAi immunity.


Subject(s)
Argonaute Proteins/metabolism , Dicistroviridae/pathogenicity , Drosophila Proteins/metabolism , Drosophila melanogaster/immunology , Drosophila melanogaster/virology , RNA Interference/immunology , Viral Proteins/metabolism , Animals , Argonaute Proteins/chemistry , Cell Line , Drosophila Proteins/chemistry , Drosophila melanogaster/genetics , Humans , Mutation , Protein Binding , Protein Conformation , Protein Interaction Maps , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Viral Proteins/chemistry , Virus Replication/immunology
14.
Elife ; 72018 04 17.
Article in English | MEDLINE | ID: mdl-29664398

ABSTRACT

ISWI family chromatin remodeling motors use sophisticated autoinhibition mechanisms to control nucleosome sliding. Yet how the different autoinhibitory domains are regulated is not well understood. Here we show that an acidic patch formed by histones H2A and H2B of the nucleosome relieves the autoinhibition imposed by the AutoN and the NegC regions of the human ISWI remodeler SNF2h. Further, by single molecule FRET we show that the acidic patch helps control the distance travelled per translocation event. We propose a model in which the acidic patch activates SNF2h by providing a landing pad for the NegC and AutoN auto-inhibitory domains. Interestingly, the INO80 complex is also strongly dependent on the acidic patch for nucleosome sliding, indicating that this substrate feature can regulate remodeling enzymes with substantially different mechanisms. We therefore hypothesize that regulating access to the acidic patch of the nucleosome plays a key role in coordinating the activities of different remodelers in the cell.


Subject(s)
Adenosine Triphosphatases/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Histones/metabolism , Nucleosomes/metabolism , Fluorescence Resonance Energy Transfer , Humans , Single Molecule Imaging
15.
Cell Rep ; 19(10): 2033-2044, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28591576

ABSTRACT

The hexameric AAA+ ATPases Rvb1 and Rvb2 (Rvbs) are essential for diverse processes ranging from metabolic signaling to chromatin remodeling, but their functions are unknown. While originally thought to act as helicases, recent proposals suggest that Rvbs act as protein assembly chaperones. However, experimental evidence for chaperone-like behavior is lacking. Here, we identify a potent protein activator of the Rvbs, a domain in the Ino80 ATPase subunit of the INO80 chromatin-remodeling complex, termed Ino80INS. Ino80INS stimulates Rvbs' ATPase activity by 16-fold while concomitantly promoting their dodecamerization. Using mass spectrometry, cryo-EM, and integrative modeling, we find that Ino80INS binds asymmetrically along the dodecamerization interface, resulting in a conformationally flexible dodecamer that collapses into hexamers upon ATP addition. Our results demonstrate the chaperone-like potential of Rvb1/Rvb2 and suggest a model where binding of multiple clients such as Ino80 stimulates ATP-driven cycling between hexamers and dodecamers, providing iterative opportunities for correct subunit assembly.


Subject(s)
Molecular Chaperones/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/chemistry , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Protein Domains , Protein Structure, Quaternary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
16.
Nature ; 547(7662): 236-240, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28636604

ABSTRACT

Gene silencing by heterochromatin is proposed to occur in part as a result of the ability of heterochromatin protein 1 (HP1) proteins to spread across large regions of the genome, compact the underlying chromatin and recruit diverse ligands. Here we identify a new property of the human HP1α protein: the ability to form phase-separated droplets. While unmodified HP1α is soluble, either phosphorylation of its N-terminal extension or DNA binding promotes the formation of phase-separated droplets. Phosphorylation-driven phase separation can be promoted or reversed by specific HP1α ligands. Known components of heterochromatin such as nucleosomes and DNA preferentially partition into the HP1α droplets, but molecules such as the transcription factor TFIIB show no preference. Using a single-molecule DNA curtain assay, we find that both unmodified and phosphorylated HP1α induce rapid compaction of DNA strands into puncta, although with different characteristics. We show by direct protein delivery into mammalian cells that an HP1α mutant incapable of phase separation in vitro forms smaller and fewer nuclear puncta than phosphorylated HP1α. These findings suggest that heterochromatin-mediated gene silencing may occur in part through sequestration of compacted chromatin in phase-separated HP1 droplets, which are dissolved or formed by specific ligands on the basis of nuclear context.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Heterochromatin/metabolism , Animals , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , DNA/metabolism , Gene Silencing , Heterochromatin/chemistry , Heterochromatin/genetics , Humans , Ligands , Mice , NIH 3T3 Cells , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Phosphorylation , Solubility , Transcription Factor TFIIB/metabolism
17.
Cell ; 166(6): 1411-1422.e16, 2016 Sep 08.
Article in English | MEDLINE | ID: mdl-27610567

ABSTRACT

A complete, 52-protein, 2.5 million dalton, Mediator-RNA polymerase II pre-initiation complex (Med-PIC) was assembled and analyzed by cryo-electron microscopy and by chemical cross-linking and mass spectrometry. The resulting complete Med-PIC structure reveals two components of functional significance, absent from previous structures, a protein kinase complex and the Mediator-activator interaction region. It thereby shows how the kinase and its target, the C-terminal domain of the polymerase, control Med-PIC interaction and transcription.


Subject(s)
Mediator Complex/chemistry , Mediator Complex/metabolism , Models, Molecular , RNA Polymerase II/chemistry , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Cryoelectron Microscopy , Gene Expression Regulation , Mass Spectrometry , Phosphorylation , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/metabolism , Saccharomyces cerevisiae Proteins/metabolism
18.
Elife ; 42015 Sep 24.
Article in English | MEDLINE | ID: mdl-26402457

ABSTRACT

The 21-subunit Mediator complex transduces regulatory information from enhancers to promoters, and performs an essential role in the initiation of transcription in all eukaryotes. Structural information on two-thirds of the complex has been limited to coarse subunit mapping onto 2-D images from electron micrographs. We have performed chemical cross-linking and mass spectrometry, and combined the results with information from X-ray crystallography, homology modeling, and cryo-electron microscopy by an integrative modeling approach to determine a 3-D model of the entire Mediator complex. The approach is validated by the use of X-ray crystal structures as internal controls and by consistency with previous results from electron microscopy and yeast two-hybrid screens. The model shows the locations and orientations of all Mediator subunits, as well as subunit interfaces and some secondary structural elements. Segments of 20-40 amino acid residues are placed with an average precision of 20 Å. The model reveals roles of individual subunits in the organization of the complex.


Subject(s)
Mediator Complex/chemistry , Saccharomyces cerevisiae/chemistry , Cross-Linking Reagents/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , Mass Spectrometry , Models, Biological , Models, Molecular
19.
J Am Soc Mass Spectrom ; 26(12): 2141-51, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26323614

ABSTRACT

Native electrospray-ionization mass spectrometry (native MS) measures biomolecules under conditions that preserve most aspects of protein tertiary and quaternary structure, enabling direct characterization of large intact protein assemblies. However, native spectra derived from these assemblies are often partially obscured by low signal-to-noise as well as broad peak shapes because of residual solvation and adduction after the electrospray process. The wide peak widths together with the fact that sequential charge state series from highly charged ions are closely spaced means that native spectra containing multiple species often suffer from high degrees of peak overlap or else contain highly interleaved charge envelopes. This situation presents a challenge for peak detection, correct charge state and charge envelope assignment, and ultimately extraction of the relevant underlying mass values of the noncovalent assemblages being investigated. In this report, we describe a comprehensive algorithm developed for addressing peak detection, peak overlap, and charge state assignment in native mass spectra, called PeakSeeker. Overlapped peaks are detected by examination of the second derivative of the raw mass spectrum. Charge state distributions of the molecular species are determined by fitting linear combinations of charge envelopes to the overall experimental mass spectrum. This software is capable of deconvoluting heterogeneous, complex, and noisy native mass spectra of large protein assemblies as demonstrated by analysis of (1) synthetic mononucleosomes containing severely overlapping peaks, (2) an RNA polymerase II/α-amanitin complex with many closely interleaved ion signals, and (3) human TriC complex containing high levels of background noise. Graphical Abstract ᅟ.


Subject(s)
Proteins/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Algorithms , Alpha-Amanitin/metabolism , Animals , Chaperonin Containing TCP-1/metabolism , HeLa Cells , Histones/metabolism , Humans , Models, Molecular , Nucleosomes/metabolism , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/enzymology , Software , Xenopus/metabolism , Xenopus Proteins/metabolism
20.
Anal Chem ; 87(16): 8541-6, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26189511

ABSTRACT

In native mass spectrometry, it has been difficult to discriminate between specific bindings of a ligand to a multiprotein complex target from the nonspecific interactions. Here, we present a deconvolution model that consists of two levels of data reduction. At the first level, the apparent association binding constants are extracted from the measured intensities of the target/ligand complexes by varying ligand concentration. At the second level, two functional forms representing the specific and nonspecific binding events are fit to the apparent binding constants obtained from the first level of modeling. Using this approach, we found that a power-law distribution described nonspecific binding of α-amanitin to yeast RNA polymerase II. Moreover, treating the concentration of the multiprotein complex as a fitting parameter reduced the impact of inaccuracies in this experimental measurement on the apparent association constants. This model improves upon current methods for separating specific and nonspecific binding to large, multiprotein complexes in native mass spectrometry, by modeling nonspecific binding with a power-law function.


Subject(s)
Alpha-Amanitin/chemistry , Ligands , Mass Spectrometry , RNA Polymerase II/chemistry , Adenosine Diphosphate/chemistry , Adenosine Diphosphate/metabolism , Alpha-Amanitin/metabolism , Creatine Kinase/chemistry , Creatine Kinase/metabolism , Humans , Protein Binding , RNA Polymerase II/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Saccharomyces cerevisiae/enzymology , Sirolimus/chemistry , Sirolimus/metabolism , Tacrolimus Binding Protein 1A/chemistry , Tacrolimus Binding Protein 1A/genetics , Tacrolimus Binding Protein 1A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...