Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Mech Dev ; 129(1-4): 51-60, 2012.
Article in English | MEDLINE | ID: mdl-22342666

ABSTRACT

Although the folding of epithelial layers is one of the most common morphogenetic events, the underlying mechanisms of this process are still poorly understood. We aimed to determine whether an artificial bending of an embryonic cell sheet, which normally remains flat, is reinforced and stabilized by intrinsic cell transformations. We observed both reinforcement and stabilization in double explants of blastocoel roof tissue from Xenopus early gastrula embryos. The reinforcement of artificial bending occurred over the course of a few hours and was driven by the gradual apical constriction and radial elongation of previously compressed cells situated at the bending arch of the concave layer of explant. Apical constriction was associated with actomyosin contraction and endocytosis-mediated engulfing of the apical cell membranes. Cooperative apical constrictions of the concave layer of cells produced a tensile force that extended over the entire surface of the explant and correlated with apical contraction of the concave side cells. In the explants taken from the anterior regions of the embryo, this reinforcement was more stable and the bending better expressed than in those taken from suprablastoporal areas. The morphogenetic role of cell responses to the bending force is discussed.


Subject(s)
Gastrula/embryology , Xenopus laevis/embryology , Actin Cytoskeleton/metabolism , Actomyosin/metabolism , Animals , Endocytosis , Gastrula/cytology , Gastrula/metabolism , Morphogenesis , Organ Specificity , Time-Lapse Imaging , Xenopus Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL