Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 126(14): 141301, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33891448

ABSTRACT

We present the first joint analysis of cluster abundances and auto or cross-correlations of three cosmic tracer fields: galaxy density, weak gravitational lensing shear, and cluster density split by optical richness. From a joint analysis (4×2pt+N) of cluster abundances, three cluster cross-correlations, and the auto correlations of the galaxy density measured from the first year data of the Dark Energy Survey, we obtain Ω_{m}=0.305_{-0.038}^{+0.055} and σ_{8}=0.783_{-0.054}^{+0.064}. This result is consistent with constraints from the DES-Y1 galaxy clustering and weak lensing two-point correlation functions for the flat νΛCDM model. Consequently, we combine cluster abundances and all two-point correlations from across all three cosmic tracer fields (6×2pt+N) and find improved constraints on cosmological parameters as well as on the cluster observable-mass scaling relation. This analysis is an important advance in both optical cluster cosmology and multiprobe analyses of upcoming wide imaging surveys.

2.
Phys Rev Lett ; 124(10): 101102, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32216401

ABSTRACT

In recent years, many γ-ray sources have been identified, yet the unresolved component hosts valuable information on the faintest emission. In order to extract it, a cross-correlation with gravitational tracers of matter in the Universe has been shown to be a promising tool. We report here the first identification of a cross-correlation signal between γ rays and the distribution of mass in the Universe probed by weak gravitational lensing. We use data from the Dark Energy Survey Y1 weak lensing data and the Fermi Large Area Telescope 9-yr γ-ray data, obtaining a signal-to-noise ratio of 5.3. The signal is mostly localized at small angular scales and high γ-ray energies, with a hint of correlation at extended separation. Blazar emission is likely the origin of the small-scale effect. We investigate implications of the large-scale component in terms of astrophysical sources and particle dark matter emission.

3.
Phys Rev Lett ; 115(5): 051301, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26274409

ABSTRACT

We present a mass map reconstructed from weak gravitational lensing shear measurements over 139 deg2 from the Dark Energy Survey science verification data. The mass map probes both luminous and dark matter, thus providing a tool for studying cosmology. We find good agreement between the mass map and the distribution of massive galaxy clusters identified using a red-sequence cluster finder. Potential candidates for superclusters and voids are identified using these maps. We measure the cross-correlation between the mass map and a magnitude-limited foreground galaxy sample and find a detection at the 6.8σ level with 20 arc min smoothing. These measurements are consistent with simulated galaxy catalogs based on N-body simulations from a cold dark matter model with a cosmological constant. This suggests low systematics uncertainties in the map. We summarize our key findings in this Letter; the detailed methodology and tests for systematics are presented in a companion paper.

4.
Phys Rev Lett ; 111(25): 251302, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24483736

ABSTRACT

Probes of cosmic expansion constitute the main basis for arguments to support or refute a possible apparent acceleration due to different expansion rates in the Universe as described by inhomogeneous cosmological models. We present in this Letter a separate argument based on results from an analysis of the growth rate of large-scale structure in the Universe as modeled by the inhomogeneous cosmological models of Szekeres. We use the models with no assumptions of spherical or axial symmetries. We find that while the Szekeres models can fit very well the observed expansion history without a Λ, they fail to produce the observed late-time suppression in the growth unless Λ is added to the dynamics. A simultaneous fit to the supernova and growth factor data shows that the cold dark matter model with a cosmological constant (ΛCDM) provides consistency with the data at a confidence level of 99.65%, while the Szekeres model without Λ achieves only a 60.46% level. When the data sets are considered separately, the Szekeres with no Λ fits the supernova data as well as the ΛCDM does, but provides a very poor fit to the growth data with only 31.31% consistency level compared to 99.99% for the ΛCDM. This absence of late-time growth suppression in inhomogeneous models without a Λ is consolidated by a physical explanation.

SELECTION OF CITATIONS
SEARCH DETAIL
...