Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 11813, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32678243

ABSTRACT

We propose a innovative concept to boost the electrochemical performance of cathode composite electrodes using surface-modified carbons with hydrophilic moieties to increase their dispersion in a Lithium Nickel Manganese Cobalt Oxide (NMC) cathode and in-situ generate Li-rich carbon surfaces. Using a rapid aqueous process, the hydrophilic carbon is effectively dispersed in NMC particles followed by the conversion of its acid surface groups (e.g. -COOH), which interact with the NMC particles due to their basicity, into grafted Li salt (-COO-Li+). The solid-state batteries prepared using the cathode composites with surface-modified carbon exhibit better electrochemical performance. Such modified carbons led to a better electronic conduction path as well as facilitating Li+ ions transfer at the carbon/NMC interface due to the presence of lithiated carboxylate groups on their surface.

2.
Nanotechnology ; 26(28): 285401, 2015 Jul 17.
Article in English | MEDLINE | ID: mdl-26120103

ABSTRACT

Solar water splitting is a key sustainable energy technology for clean, storable and renewable source of energy in the future. Here we report that Merocyanine-540 dye-sensitized and Rh nanoparticle-decorated molecular beam epitaxially grown In0.25Ga0.75N nanowire arrays have produced hydrogen from ethylenediaminetetraacetic acid (EDTA) and acetonitrile mixture solution under green, yellow and orange solar spectra (up to 610 nm) for the first time. An apparent quantum efficiency of 0.3% is demonstrated for wavelengths 525-600 nm, providing a viable approach to harness deep-visible and near-infrared solar energy for efficient and stable water splitting.

3.
Nat Commun ; 6: 6797, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25854846

ABSTRACT

Solar water splitting for hydrogen generation can be a potential source of renewable energy for the future. Here we show that efficient and stable stoichiometric dissociation of water into hydrogen and oxygen can be achieved under visible light by eradicating the potential barrier on nonpolar surfaces of indium gallium nitride nanowires through controlled p-type dopant incorporation. An apparent quantum efficiency of ∼12.3% is achieved for overall neutral (pH∼7.0) water splitting under visible light illumination (400-475 nm). Moreover, using a double-band p-type gallium nitride/indium gallium nitride nanowire heterostructure, we show a solar-to-hydrogen conversion efficiency of ∼1.8% under concentrated sunlight. The dominant effect of near-surface band structure in transforming the photocatalytic performance is elucidated. The stability and efficiency of this recyclable, wafer-level nanoscale metal-nitride photocatalyst in neutral water demonstrates their potential use for large-scale solar-fuel conversion.

4.
Nat Commun ; 5: 3825, 2014 Apr 30.
Article in English | MEDLINE | ID: mdl-24781276

ABSTRACT

Solar water splitting is one of the key steps in artificial photosynthesis for future carbon-neutral, storable and sustainable source of energy. Here we show that one of the major obstacles for achieving efficient and stable overall water splitting over the emerging nanostructured photocatalyst is directly related to the uncontrolled surface charge properties. By tuning the Fermi level on the nonpolar surfaces of gallium nitride nanowire arrays, we demonstrate that the quantum efficiency can be enhanced by more than two orders of magnitude. The internal quantum efficiency and activity on p-type gallium nitride nanowires can reach ~51% and ~4.0 mol hydrogen h(-1) g(-1), respectively. The nanowires remain virtually unchanged after over 50,000 µmol gas (hydrogen and oxygen) is produced, which is more than 10,000 times the amount of photocatalyst itself (~4.6 µmol). The essential role of Fermi-level tuning in balancing redox reactions and in enhancing the efficiency and stability is also elucidated.


Subject(s)
Gallium/chemistry , Nanotechnology/methods , Nanowires/chemistry , Photochemistry/methods , Water/chemistry , Catalysis , Microscopy, Electron, Transmission , Oxidation-Reduction , Photoelectron Spectroscopy , Quantum Theory , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...